Chris4K commited on
Commit
47e661d
·
verified ·
1 Parent(s): 447c5ea

Update services/strategy.py

Browse files
Files changed (1) hide show
  1. services/strategy.py +3 -3
services/strategy.py CHANGED
@@ -52,7 +52,7 @@ class BestOfN(GenerationStrategy):
52
  input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
53
  output = generator.generate(input_ids, **model_kwargs)
54
  response =generator.tokenizer.decode(output[0], skip_special_tokens=True)
55
- score = generator.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
56
  scored_outputs.append((response, score))
57
  return max(scored_outputs, key=lambda x: x[1])[0]
58
 
@@ -76,7 +76,7 @@ class DVT(GenerationStrategy):
76
  input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
77
  output = generator.generate(input_ids, **model_kwargs)
78
  response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
79
- score = generator.prm_model(**self.llama_tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
80
  results.append((response, score))
81
 
82
  for _ in range(depth - 1):
@@ -85,7 +85,7 @@ class DVT(GenerationStrategy):
85
  input_ids = generator.tokenizer(response, return_tensors="pt").input_ids.to(self.device)
86
  output = generator.generate(input_ids, **model_kwargs)
87
  extended_response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
88
- score = generator.prm_model(**self.llama_tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
89
  results.append((extended_response, score))
90
  return max(results, key=lambda x: x[1])[0]
91
 
 
52
  input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
53
  output = generator.generate(input_ids, **model_kwargs)
54
  response =generator.tokenizer.decode(output[0], skip_special_tokens=True)
55
+ score = generator.prm_model(**generator.tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
56
  scored_outputs.append((response, score))
57
  return max(scored_outputs, key=lambda x: x[1])[0]
58
 
 
76
  input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
77
  output = generator.generate(input_ids, **model_kwargs)
78
  response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
79
+ score = generator.prm_model(**generator.tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
80
  results.append((response, score))
81
 
82
  for _ in range(depth - 1):
 
85
  input_ids = generator.tokenizer(response, return_tensors="pt").input_ids.to(self.device)
86
  output = generator.generate(input_ids, **model_kwargs)
87
  extended_response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
88
+ score = generator.prm_model(**generator.tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
89
  results.append((extended_response, score))
90
  return max(results, key=lambda x: x[1])[0]
91