Update services/strategy.py
Browse files- services/strategy.py +3 -3
services/strategy.py
CHANGED
@@ -52,7 +52,7 @@ class BestOfN(GenerationStrategy):
|
|
52 |
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
53 |
output = generator.generate(input_ids, **model_kwargs)
|
54 |
response =generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
-
score = generator.prm_model(**
|
56 |
scored_outputs.append((response, score))
|
57 |
return max(scored_outputs, key=lambda x: x[1])[0]
|
58 |
|
@@ -76,7 +76,7 @@ class DVT(GenerationStrategy):
|
|
76 |
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
77 |
output = generator.generate(input_ids, **model_kwargs)
|
78 |
response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
79 |
-
score = generator.prm_model(**
|
80 |
results.append((response, score))
|
81 |
|
82 |
for _ in range(depth - 1):
|
@@ -85,7 +85,7 @@ class DVT(GenerationStrategy):
|
|
85 |
input_ids = generator.tokenizer(response, return_tensors="pt").input_ids.to(self.device)
|
86 |
output = generator.generate(input_ids, **model_kwargs)
|
87 |
extended_response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
88 |
-
score = generator.prm_model(**
|
89 |
results.append((extended_response, score))
|
90 |
return max(results, key=lambda x: x[1])[0]
|
91 |
|
|
|
52 |
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
53 |
output = generator.generate(input_ids, **model_kwargs)
|
54 |
response =generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
+
score = generator.prm_model(**generator.tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
|
56 |
scored_outputs.append((response, score))
|
57 |
return max(scored_outputs, key=lambda x: x[1])[0]
|
58 |
|
|
|
76 |
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(self.device)
|
77 |
output = generator.generate(input_ids, **model_kwargs)
|
78 |
response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
79 |
+
score = generator.prm_model(**generator.tokenizer(response, return_tensors="pt").to(self.device)).logits.mean().item()
|
80 |
results.append((response, score))
|
81 |
|
82 |
for _ in range(depth - 1):
|
|
|
85 |
input_ids = generator.tokenizer(response, return_tensors="pt").input_ids.to(self.device)
|
86 |
output = generator.generate(input_ids, **model_kwargs)
|
87 |
extended_response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
88 |
+
score = generator.prm_model(**generator.tokenizer(extended_response, return_tensors="pt").to(self.device)).logits.mean().item()
|
89 |
results.append((extended_response, score))
|
90 |
return max(results, key=lambda x: x[1])[0]
|
91 |
|