Create services/pdf_service.py
Browse files- services/pdf_service.py +117 -55
services/pdf_service.py
CHANGED
@@ -1,11 +1,14 @@
|
|
1 |
# services/pdf_service.py
|
2 |
from pathlib import Path
|
3 |
-
from typing import List, Dict, Any
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
|
|
|
|
6 |
import asyncio
|
7 |
from concurrent.futures import ThreadPoolExecutor
|
8 |
import logging
|
|
|
9 |
from config.config import settings
|
10 |
|
11 |
logger = logging.getLogger(__name__)
|
@@ -15,70 +18,129 @@ class PDFService:
|
|
15 |
self.embedder = model_service.embedder
|
16 |
self.text_splitter = RecursiveCharacterTextSplitter(
|
17 |
chunk_size=settings.CHUNK_SIZE,
|
18 |
-
chunk_overlap=settings.CHUNK_OVERLAP
|
|
|
19 |
)
|
20 |
-
self.
|
21 |
-
self.
|
|
|
|
|
22 |
|
23 |
-
async def
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
45 |
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
51 |
|
52 |
-
|
53 |
-
all_texts.extend(result)
|
54 |
|
55 |
-
|
56 |
-
|
|
|
|
|
|
|
57 |
|
58 |
-
async def
|
59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
60 |
await self.index_pdfs()
|
61 |
-
|
62 |
-
query_embedding = self.embedder.encode([query], convert_to_tensor=True).cpu().detach().numpy()
|
63 |
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
[
|
68 |
convert_to_tensor=True
|
69 |
).cpu().detach().numpy()
|
70 |
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
-
|
|
|
|
|
84 |
|
|
|
1 |
# services/pdf_service.py
|
2 |
from pathlib import Path
|
3 |
+
from typing import List, Dict, Any, Optional
|
4 |
from PyPDF2 import PdfReader
|
5 |
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
6 |
+
import faiss
|
7 |
+
import numpy as np
|
8 |
import asyncio
|
9 |
from concurrent.futures import ThreadPoolExecutor
|
10 |
import logging
|
11 |
+
from datetime import datetime
|
12 |
from config.config import settings
|
13 |
|
14 |
logger = logging.getLogger(__name__)
|
|
|
18 |
self.embedder = model_service.embedder
|
19 |
self.text_splitter = RecursiveCharacterTextSplitter(
|
20 |
chunk_size=settings.CHUNK_SIZE,
|
21 |
+
chunk_overlap=settings.CHUNK_OVERLAP,
|
22 |
+
separators=["\n\n", "\n", ".", "!", "?", ",", " ", ""]
|
23 |
)
|
24 |
+
self.index = None
|
25 |
+
self.chunks = []
|
26 |
+
self.last_update = None
|
27 |
+
self.pdf_metadata = {}
|
28 |
|
29 |
+
async def process_pdf(self, pdf_path: Path) -> List[Dict[str, Any]]:
|
30 |
+
"""Process a single PDF file"""
|
31 |
+
try:
|
32 |
+
reader = PdfReader(str(pdf_path))
|
33 |
+
chunks = []
|
34 |
+
|
35 |
+
# Extract metadata
|
36 |
+
metadata = {
|
37 |
+
'title': reader.metadata.get('/Title', ''),
|
38 |
+
'author': reader.metadata.get('/Author', ''),
|
39 |
+
'creation_date': reader.metadata.get('/CreationDate', ''),
|
40 |
+
'pages': len(reader.pages),
|
41 |
+
'filename': pdf_path.name
|
42 |
+
}
|
43 |
+
self.pdf_metadata[pdf_path.name] = metadata
|
44 |
+
|
45 |
+
# Process each page
|
46 |
+
for page_num, page in enumerate(reader.pages):
|
47 |
+
text = page.extract_text()
|
48 |
+
if not text:
|
49 |
+
continue
|
50 |
+
|
51 |
+
page_chunks = self.text_splitter.split_text(text)
|
52 |
+
for i, chunk in enumerate(page_chunks):
|
53 |
+
chunks.append({
|
54 |
+
'text': chunk,
|
55 |
+
'source': pdf_path.name,
|
56 |
+
'page': page_num + 1,
|
57 |
+
'chunk_index': i,
|
58 |
+
'metadata': metadata,
|
59 |
+
'timestamp': datetime.now().isoformat()
|
60 |
+
})
|
61 |
+
|
62 |
+
return chunks
|
63 |
+
|
64 |
+
except Exception as e:
|
65 |
+
logger.error(f"Error processing PDF {pdf_path}: {e}")
|
66 |
+
return []
|
67 |
|
68 |
+
async def index_pdfs(self, pdf_folder: Path = settings.PDF_FOLDER) -> None:
|
69 |
+
"""Index all PDFs in the specified folder"""
|
70 |
+
try:
|
71 |
+
pdf_files = list(pdf_folder.glob('*.pdf'))
|
72 |
+
if not pdf_files:
|
73 |
+
logger.warning(f"No PDF files found in {pdf_folder}")
|
74 |
+
return
|
75 |
+
|
76 |
+
# Process PDFs in parallel
|
77 |
+
async with ThreadPoolExecutor() as executor:
|
78 |
+
tasks = [
|
79 |
+
asyncio.create_task(self.process_pdf(pdf_file))
|
80 |
+
for pdf_file in pdf_files
|
81 |
+
]
|
82 |
+
chunk_lists = await asyncio.gather(*tasks)
|
83 |
+
|
84 |
+
# Combine all chunks
|
85 |
+
self.chunks = []
|
86 |
+
for chunk_list in chunk_lists:
|
87 |
+
self.chunks.extend(chunk_list)
|
88 |
+
|
89 |
+
# Create FAISS index
|
90 |
+
texts = [chunk['text'] for chunk in self.chunks]
|
91 |
+
embeddings = self.embedder.encode(
|
92 |
+
texts,
|
93 |
+
convert_to_tensor=True,
|
94 |
+
show_progress_bar=True
|
95 |
+
).cpu().detach().numpy()
|
96 |
+
|
97 |
+
dimension = embeddings.shape[1]
|
98 |
+
self.index = faiss.IndexFlatL2(dimension)
|
99 |
+
self.index.add(embeddings)
|
100 |
|
101 |
+
self.last_update = datetime.now()
|
|
|
102 |
|
103 |
+
logger.info(f"Indexed {len(self.chunks)} chunks from {len(pdf_files)} PDFs")
|
104 |
+
|
105 |
+
except Exception as e:
|
106 |
+
logger.error(f"Error indexing PDFs: {e}")
|
107 |
+
raise
|
108 |
|
109 |
+
async def search(
|
110 |
+
self,
|
111 |
+
query: str,
|
112 |
+
top_k: int = 5,
|
113 |
+
min_score: float = 0.5
|
114 |
+
) -> List[Dict[str, Any]]:
|
115 |
+
"""Search indexed PDFs"""
|
116 |
+
if not self.index or not self.chunks:
|
117 |
await self.index_pdfs()
|
|
|
|
|
118 |
|
119 |
+
try:
|
120 |
+
# Get query embedding
|
121 |
+
query_embedding = self.embedder.encode(
|
122 |
+
[query],
|
123 |
convert_to_tensor=True
|
124 |
).cpu().detach().numpy()
|
125 |
|
126 |
+
# Search
|
127 |
+
distances, indices = self.index.search(query_embedding, top_k * 2) # Get extra results for filtering
|
128 |
+
|
129 |
+
# Process results
|
130 |
+
results = []
|
131 |
+
for i, idx in enumerate(indices[0]):
|
132 |
+
if idx >= len(self.chunks) or distances[0][i] > min_score:
|
133 |
+
continue
|
134 |
+
|
135 |
+
chunk = self.chunks[idx].copy()
|
136 |
+
chunk['score'] = float(1 - distances[0][i]) # Convert distance to similarity score
|
137 |
+
results.append(chunk)
|
138 |
+
|
139 |
+
# Sort by score and take top_k
|
140 |
+
results.sort(key=lambda x: x['score'], reverse=True)
|
141 |
+
return results[:top_k]
|
142 |
|
143 |
+
except Exception as e:
|
144 |
+
logger.error(f"Error searching PDFs: {e}")
|
145 |
+
raise
|
146 |
|