Create llama_generator.py
Browse files- services/llama_generator.py +177 -0
services/llama_generator.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# llama_generator.py
|
2 |
+
from config.config import GenerationConfig, ModelConfig
|
3 |
+
|
4 |
+
@observe()
|
5 |
+
class LlamaGenerator(BaseGenerator):
|
6 |
+
def __init__(
|
7 |
+
self,
|
8 |
+
llama_model_name: str,
|
9 |
+
prm_model_path: str,
|
10 |
+
device: Optional[str] = None,
|
11 |
+
default_generation_config: Optional[GenerationConfig] = None,
|
12 |
+
model_config: Optional[ModelConfig] = None,
|
13 |
+
cache_size: int = 1000,
|
14 |
+
max_batch_size: int = 32,
|
15 |
+
# self.tokenizer = self.load_tokenizer(llama_model_name)
|
16 |
+
# self.tokenizer = self.load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
|
17 |
+
|
18 |
+
):
|
19 |
+
|
20 |
+
@observe()
|
21 |
+
def load_model(self, model_name: str):
|
22 |
+
# Code to load your model, e.g., Hugging Face's transformers library
|
23 |
+
from transformers import AutoModelForCausalLM
|
24 |
+
return AutoModelForCausalLM.from_pretrained(model_name)
|
25 |
+
|
26 |
+
@observe()
|
27 |
+
def load_tokenizer(self, model_name: str):
|
28 |
+
# Load the tokenizer associated with the model
|
29 |
+
from transformers import AutoTokenizer
|
30 |
+
return AutoTokenizer.from_pretrained(model_name)
|
31 |
+
|
32 |
+
self.tokenizer = load_tokenizer(llama_model_name) # Add this line to initialize the tokenizer
|
33 |
+
|
34 |
+
super().__init__(
|
35 |
+
llama_model_name,
|
36 |
+
device,
|
37 |
+
default_generation_config,
|
38 |
+
model_config,
|
39 |
+
cache_size,
|
40 |
+
max_batch_size
|
41 |
+
)
|
42 |
+
|
43 |
+
# Initialize models
|
44 |
+
self.model_manager.load_model(
|
45 |
+
"llama",
|
46 |
+
llama_model_name,
|
47 |
+
"llama",
|
48 |
+
self.model_config
|
49 |
+
)
|
50 |
+
self.model_manager.load_model(
|
51 |
+
"prm",
|
52 |
+
prm_model_path,
|
53 |
+
"gguf",
|
54 |
+
self.model_config
|
55 |
+
)
|
56 |
+
|
57 |
+
self.prompt_builder = LlamaPromptTemplate()
|
58 |
+
self._init_strategies()
|
59 |
+
|
60 |
+
def _init_strategies(self):
|
61 |
+
self.strategies = {
|
62 |
+
"default": DefaultStrategy(),
|
63 |
+
"majority_voting": MajorityVotingStrategy(),
|
64 |
+
"best_of_n": BestOfN(),
|
65 |
+
"beam_search": BeamSearch(),
|
66 |
+
"dvts": DVT(),
|
67 |
+
}
|
68 |
+
|
69 |
+
def _get_generation_kwargs(self, config: GenerationConfig) -> Dict[str, Any]:
|
70 |
+
"""Get generation kwargs based on config."""
|
71 |
+
return {
|
72 |
+
key: getattr(config, key)
|
73 |
+
for key in [
|
74 |
+
"max_new_tokens",
|
75 |
+
"temperature",
|
76 |
+
"top_p",
|
77 |
+
"top_k",
|
78 |
+
"repetition_penalty",
|
79 |
+
"length_penalty",
|
80 |
+
"do_sample"
|
81 |
+
]
|
82 |
+
if hasattr(config, key)
|
83 |
+
}
|
84 |
+
|
85 |
+
@observe()
|
86 |
+
def generate_stream (self):
|
87 |
+
return " NOt implememnted yet "
|
88 |
+
|
89 |
+
@observe()
|
90 |
+
def generate(
|
91 |
+
self,
|
92 |
+
prompt: str,
|
93 |
+
model_kwargs: Dict[str, Any],
|
94 |
+
strategy: str = "default",
|
95 |
+
**kwargs
|
96 |
+
) -> str:
|
97 |
+
"""
|
98 |
+
Generate text based on a given strategy.
|
99 |
+
|
100 |
+
Args:
|
101 |
+
prompt (str): Input prompt for text generation.
|
102 |
+
model_kwargs (Dict[str, Any]): Additional arguments for model generation.
|
103 |
+
strategy (str): The generation strategy to use (default: "default").
|
104 |
+
**kwargs: Additional arguments passed to the strategy.
|
105 |
+
|
106 |
+
Returns:
|
107 |
+
str: Generated text response.
|
108 |
+
|
109 |
+
Raises:
|
110 |
+
ValueError: If the specified strategy is not available.
|
111 |
+
"""
|
112 |
+
# Validate that the strategy exists
|
113 |
+
if strategy not in self.strategies:
|
114 |
+
raise ValueError(f"Unknown strategy: {strategy}. Available strategies are: {list(self.strategies.keys())}")
|
115 |
+
|
116 |
+
# Extract `generator` from kwargs if it exists to prevent duplication
|
117 |
+
kwargs.pop("generator", None)
|
118 |
+
|
119 |
+
# Call the selected strategy with the provided arguments
|
120 |
+
return self.strategies[strategy].generate(
|
121 |
+
generator=self, # The generator instance
|
122 |
+
prompt=prompt, # The input prompt
|
123 |
+
model_kwargs=model_kwargs, # Arguments for the model
|
124 |
+
**kwargs # Any additional strategy-specific arguments
|
125 |
+
)
|
126 |
+
|
127 |
+
@observe()
|
128 |
+
def generate_with_context(
|
129 |
+
self,
|
130 |
+
context: str,
|
131 |
+
user_input: str,
|
132 |
+
chat_history: List[Tuple[str, str]],
|
133 |
+
model_kwargs: Dict[str, Any],
|
134 |
+
max_history_turns: int = 3,
|
135 |
+
strategy: str = "default",
|
136 |
+
num_samples: int = 5,
|
137 |
+
depth: int = 3,
|
138 |
+
breadth: int = 2,
|
139 |
+
|
140 |
+
) -> str:
|
141 |
+
"""Generate a response using context and chat history.
|
142 |
+
|
143 |
+
Args:
|
144 |
+
context (str): Context for the conversation
|
145 |
+
user_input (str): Current user input
|
146 |
+
chat_history (List[Tuple[str, str]]): List of (user, assistant) message pairs
|
147 |
+
model_kwargs (dict): Additional arguments for model.generate()
|
148 |
+
max_history_turns (int): Maximum number of history turns to include
|
149 |
+
strategy (str): Generation strategy
|
150 |
+
num_samples (int): Number of samples for applicable strategies
|
151 |
+
depth (int): Depth for DVTS strategy
|
152 |
+
breadth (int): Breadth for DVTS strategy
|
153 |
+
|
154 |
+
Returns:
|
155 |
+
str: Generated response
|
156 |
+
"""
|
157 |
+
prompt = self.prompt_builder.format(
|
158 |
+
context,
|
159 |
+
user_input,
|
160 |
+
chat_history,
|
161 |
+
max_history_turns
|
162 |
+
)
|
163 |
+
return self.generate(
|
164 |
+
generator=self,
|
165 |
+
prompt=prompt,
|
166 |
+
model_kwargs=model_kwargs,
|
167 |
+
strategy=strategy,
|
168 |
+
num_samples=num_samples,
|
169 |
+
depth=depth,
|
170 |
+
breadth=breadth
|
171 |
+
)
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
def check_health(self) -> HealthStatus:
|
176 |
+
"""Check the health status of the generator."""
|
177 |
+
return self.health_check.check_system_resources() # TODO add model status
|