Update services/strategy.py
Browse files- services/strategy.py +7 -7
services/strategy.py
CHANGED
@@ -49,17 +49,17 @@ class BestOfN(GenerationStrategy):
|
|
49 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
50 |
scored_outputs = []
|
51 |
for _ in range(num_samples):
|
52 |
-
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(
|
53 |
output = generator.generate(input_ids, **model_kwargs)
|
54 |
response =generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
-
score = generator.prm_model(**generator.tokenizer(response, return_tensors="pt").to(
|
56 |
scored_outputs.append((response, score))
|
57 |
return max(scored_outputs, key=lambda x: x[1])[0]
|
58 |
|
59 |
|
60 |
class BeamSearch(GenerationStrategy):
|
61 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
62 |
-
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(
|
63 |
outputs = generator.generate(
|
64 |
input_ids,
|
65 |
num_beams=num_samples,
|
@@ -73,19 +73,19 @@ class DVT(GenerationStrategy):
|
|
73 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
74 |
results = []
|
75 |
for _ in range(breadth):
|
76 |
-
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(
|
77 |
output = generator.generate(input_ids, **model_kwargs)
|
78 |
response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
79 |
-
score = generator.prm_model(**generator.tokenizer(response, return_tensors="pt").to(
|
80 |
results.append((response, score))
|
81 |
|
82 |
for _ in range(depth - 1):
|
83 |
best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
|
84 |
for response, _ in best_responses:
|
85 |
-
input_ids = generator.tokenizer(response, return_tensors="pt").input_ids.to(
|
86 |
output = generator.generate(input_ids, **model_kwargs)
|
87 |
extended_response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
88 |
-
score = generator.prm_model(**generator.tokenizer(extended_response, return_tensors="pt").to(
|
89 |
results.append((extended_response, score))
|
90 |
return max(results, key=lambda x: x[1])[0]
|
91 |
|
|
|
49 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
50 |
scored_outputs = []
|
51 |
for _ in range(num_samples):
|
52 |
+
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
|
53 |
output = generator.generate(input_ids, **model_kwargs)
|
54 |
response =generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
55 |
+
score = generator.prm_model(**generator.tokenizer(response, return_tensors="pt").to(generator.device)).logits.mean().item()
|
56 |
scored_outputs.append((response, score))
|
57 |
return max(scored_outputs, key=lambda x: x[1])[0]
|
58 |
|
59 |
|
60 |
class BeamSearch(GenerationStrategy):
|
61 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
62 |
+
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
|
63 |
outputs = generator.generate(
|
64 |
input_ids,
|
65 |
num_beams=num_samples,
|
|
|
73 |
def generate(self, generator: 'BaseGenerator', prompt: str, model_kwargs: Dict[str, Any], num_samples: int = 5, **kwargs) -> str:
|
74 |
results = []
|
75 |
for _ in range(breadth):
|
76 |
+
input_ids = generator.tokenizer(prompt, return_tensors="pt").input_ids.to(generator.device)
|
77 |
output = generator.generate(input_ids, **model_kwargs)
|
78 |
response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
79 |
+
score = generator.prm_model(**generator.tokenizer(response, return_tensors="pt").to(generator.device)).logits.mean().item()
|
80 |
results.append((response, score))
|
81 |
|
82 |
for _ in range(depth - 1):
|
83 |
best_responses = sorted(results, key=lambda x: x[1], reverse=True)[:breadth]
|
84 |
for response, _ in best_responses:
|
85 |
+
input_ids = generator.tokenizer(response, return_tensors="pt").input_ids.to(generator.device)
|
86 |
output = generator.generate(input_ids, **model_kwargs)
|
87 |
extended_response = generator.tokenizer.decode(output[0], skip_special_tokens=True)
|
88 |
+
score = generator.prm_model(**generator.tokenizer(extended_response, return_tensors="pt").to(generator.device)).logits.mean().item()
|
89 |
results.append((extended_response, score))
|
90 |
return max(results, key=lambda x: x[1])[0]
|
91 |
|