from transformers import AutoTokenizer, AutoModelForCausalLM, LlamaConfig from sentence_transformers import SentenceTransformer import torch from functools import lru_cache from config.config import settings import logging logger = logging.getLogger(__name__) class ModelService: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) cls._instance._initialized = False return cls._instance def __init__(self): if not self._initialized: self._initialized = True self._load_models() def _load_models(self): try: # Load tokenizer self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME) # Load model configuration config = LlamaConfig.from_pretrained(settings.MODEL_NAME) # Check and update rope_scaling if necessary if hasattr(config, "rope_scaling") and config.rope_scaling is not None: logger.info("Updating rope_scaling in configuration...") config.rope_scaling = { "type": "linear", # Ensure this matches the expected type "factor": config.rope_scaling.get('factor', 1.0) # Use existing factor or default to 1.0 } # Load model with the updated configuration self.model = AutoModelForCausalLM.from_pretrained( settings.MODEL_NAME, torch_dtype=torch.float16 if settings.DEVICE == "cuda" else torch.float32, device_map="auto" if settings.DEVICE == "cuda" else None, config=config ) # Load sentence embedder self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL) except Exception as e: logger.error(f"Error loading models: {e}") raise def get_models(self): return self.tokenizer, self.model, self.embedder