# services/model_service.py from transformers import AutoTokenizer, AutoModelForCausalLM from sentence_transformers import SentenceTransformer import torch from functools import lru_cache from config.config import settings import logging logger = logging.getLogger(__name__) class ModelService: _instance = None def __new__(cls): if cls._instance is None: cls._instance = super().__new__(cls) cls._instance._initialized = False return cls._instance def __init__(self): if not self._initialized: self._initialized = True self._load_models() @lru_cache(maxsize=1) def _load_models(self): try: self.tokenizer = AutoTokenizer.from_pretrained(settings.MODEL_NAME) self.model = AutoModelForCausalLM.from_pretrained( settings.MODEL_NAME, torch_dtype=torch.float16 if settings.DEVICE == "cuda" else torch.float32, device_map="auto" if settings.DEVICE == "cuda" else None ) self.embedder = SentenceTransformer(settings.EMBEDDER_MODEL) except Exception as e: logger.error(f"Error loading models: {e}") raise def get_models(self): return self.tokenizer, self.model, self.embedder