Spaces:
Sleeping
Sleeping
import torch | |
from transformers import AutoModelForCausalLM, AutoTokenizer | |
from pydantic import BaseModel | |
from fastapi import HTTPException | |
class UserQuery(BaseModel): | |
user_query: str | |
class ChatBot: | |
def __init__(self): | |
self.tokenizer = None | |
self.model = None | |
def load_from_hub(self,model_id: str): | |
self.tokenizer = AutoTokenizer.from_pretrained(model_id, | |
device_map = 'auto') | |
self.model = AutoModelForCausalLM.from_pretrained(model_id, | |
device_map='auto') | |
def get_response(self,text: UserQuery) -> str: | |
if not self.model or not self.tokenizer: | |
raise HTTPException(status_code=400, detail="Model is not loaded") | |
inputs = self.tokenizer(text,return_tensors='pt') | |
outputs = self.model.generate(**inputs, | |
max_new_tokens = 100, | |
# add extra parameters if models runs successfully | |
) | |
response = self.tokenizer.decode(outputs[0],skip_special_tokens=True) | |
response = self.get_clean_response(response) | |
return response | |
def get_clean_response(self,response): | |
if type(response) == list: | |
response = response[0].split("\n") | |
else: | |
response = response.split("\n") | |
ans = '' | |
cnt = 0 # to verify if we have seen Human before | |
for answer in response: | |
if answer.startswith("[|Human|]"): cnt += 1 | |
elif answer.startswith('[|AI|]'): | |
answer = answer.split(' ') | |
ans += ' '.join(char for char in answer[1:]) | |
ans += '\n' | |
elif cnt: | |
ans += answer + '\n' | |
return ans |