File size: 4,843 Bytes
12c661c
 
b34502b
12c661c
360e8aa
12c661c
 
 
a6c5429
12c661c
360e8aa
12c661c
 
 
 
b34502b
12c661c
 
 
 
 
8999d94
47575a3
a6c5429
12c661c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7f01be6
3cf17c6
12c661c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0839158
12c661c
bd9d10e
12c661c
 
 
bd9d10e
12c661c
 
 
 
 
bd9d10e
8ea7ad4
 
12c661c
8ea7ad4
12c661c
 
 
 
b34502b
b54046d
e03f966
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
import json
import os
import gradio as gr
import time
from pydantic import BaseModel, Field
from typing import Any, Optional, Dict, List
from huggingface_hub import InferenceClient
from langchain.llms.base import LLM
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from dotenv import load_dotenv
from transformers import AutoTokenizer
from transformers import Tool

load_dotenv()

path_work = "."
hf_token = os.getenv("HF")

embeddings = HuggingFaceInstructEmbeddings(
    model_name="sentence-transformers/all-MiniLM-L6-v2",
    model_kwargs={"device": "cpu"}
)

vectordb = Chroma(
    persist_directory=path_work + '/new_papers',
    embedding_function=embeddings
)

retriever = vectordb.as_retriever(search_kwargs={"k": 2})#5

class KwArgsModel(BaseModel):
    kwargs: Dict[str, Any] = Field(default_factory=dict)

class CustomInferenceClient(LLM, KwArgsModel):
    model_name: str
    inference_client: InferenceClient

    def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None):
        inference_client = InferenceClient(model=model_name, token=hf_token)
        super().__init__(
            model_name=model_name,
            hf_token=hf_token,
            kwargs=kwargs,
            inference_client=inference_client
        )

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None
    ) -> str:
        if stop is not None:
            raise ValueError("stop kwargs are not permitted.")
        response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True)
        response = ''.join(response_gen)
        return response

    @property
    def _llm_type(self) -> str:
        return "custom"

    @property
    def _identifying_params(self) -> dict:
        return {"model_name": self.model_name}

kwargs = {"max_new_tokens": 256, "temperature": 0.9, "top_p": 0.6, "repetition_penalty": 1.3, "do_sample": True}

model_list = [
    "meta-llama/Llama-2-13b-chat-hf",
    "HuggingFaceH4/zephyr-7b-alpha",
    "meta-llama/Llama-2-70b-chat-hf",
    "tiiuae/falcon-180B-chat"
]

qa_chain = None

def load_model(model_selected):
    global qa_chain
    model_name = model_selected
    llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs)

    from langchain.chains import RetrievalQA
    qa_chain = RetrievalQA.from_chain_type(
        llm=llm,
        chain_type="stuff",
        retriever=retriever,
        return_source_documents=True,
        verbose=True,
    )
    return qa_chain

load_model("meta-llama/Llama-2-70b-chat-hf")

##########
#####
#########


###
###
###

def predict(message, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3):
    temperature = float(temperature)
    if temperature < 1e-2: temperature = 1e-2
    top_p = float(top_p)

    llm_response = qa_chain(message)
    res_result = llm_response['result']

    res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
    response = f"{res_result}" + "\n\n" + "[Answer Source Documents (Ctrl + Click!)] :" + "\n" + f" \n {res_relevant_doc}"
    print("response: =====> \n", response, "\n\n")
    tokens = response.split('\n')
    token_list = []
    for idx, token in enumerate(tokens):
        token_dict = {"id": idx + 1, "text": token}
        token_list.append(token_dict)
    response = {"data": {"token": token_list}}
    response = json.dumps(response, indent=4)

    response = json.loads(response)
    data_dict = response.get('data', {})
    token_list = data_dict.get('token', [])

    partial_message = ""
    for token_entry in token_list:
        if token_entry:
            try:
                token_id = token_entry.get('id', None)
                token_text = token_entry.get('text', None)

                if token_text:
                    for char in token_text:
                        partial_message += char
                        yield partial_message
                        time.sleep(0.01)
                else:
                    print(f"Warning ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
                    pass

            except KeyError as e:
                gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
                continue

class TextGeneratorTool(Tool):
    name = "vector_retriever"
    description = "This tool searches in a vector store based on a given prompt."
    inputs = ["prompt"]
    outputs = ["generated_text"]


    def __init__(self):
        #self.retriever = db.as_retriever(search_kwargs={"k": 1})
        pass  # You might want to add some initialization logic here
		
    def __call__(self, prompt: str):
        result = predict(prompt,  0.9, 512, 0.6, 1.4)
        return result