File size: 4,843 Bytes
12c661c b34502b 12c661c 360e8aa 12c661c a6c5429 12c661c 360e8aa 12c661c b34502b 12c661c 8999d94 47575a3 a6c5429 12c661c 7f01be6 3cf17c6 12c661c 0839158 12c661c bd9d10e 12c661c bd9d10e 12c661c bd9d10e 8ea7ad4 12c661c 8ea7ad4 12c661c b34502b b54046d e03f966 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 |
import json
import os
import gradio as gr
import time
from pydantic import BaseModel, Field
from typing import Any, Optional, Dict, List
from huggingface_hub import InferenceClient
from langchain.llms.base import LLM
from langchain.embeddings import HuggingFaceInstructEmbeddings
from langchain.vectorstores import Chroma
from dotenv import load_dotenv
from transformers import AutoTokenizer
from transformers import Tool
load_dotenv()
path_work = "."
hf_token = os.getenv("HF")
embeddings = HuggingFaceInstructEmbeddings(
model_name="sentence-transformers/all-MiniLM-L6-v2",
model_kwargs={"device": "cpu"}
)
vectordb = Chroma(
persist_directory=path_work + '/new_papers',
embedding_function=embeddings
)
retriever = vectordb.as_retriever(search_kwargs={"k": 2})#5
class KwArgsModel(BaseModel):
kwargs: Dict[str, Any] = Field(default_factory=dict)
class CustomInferenceClient(LLM, KwArgsModel):
model_name: str
inference_client: InferenceClient
def __init__(self, model_name: str, hf_token: str, kwargs: Optional[Dict[str, Any]] = None):
inference_client = InferenceClient(model=model_name, token=hf_token)
super().__init__(
model_name=model_name,
hf_token=hf_token,
kwargs=kwargs,
inference_client=inference_client
)
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None
) -> str:
if stop is not None:
raise ValueError("stop kwargs are not permitted.")
response_gen = self.inference_client.text_generation(prompt, **self.kwargs, stream=True)
response = ''.join(response_gen)
return response
@property
def _llm_type(self) -> str:
return "custom"
@property
def _identifying_params(self) -> dict:
return {"model_name": self.model_name}
kwargs = {"max_new_tokens": 256, "temperature": 0.9, "top_p": 0.6, "repetition_penalty": 1.3, "do_sample": True}
model_list = [
"meta-llama/Llama-2-13b-chat-hf",
"HuggingFaceH4/zephyr-7b-alpha",
"meta-llama/Llama-2-70b-chat-hf",
"tiiuae/falcon-180B-chat"
]
qa_chain = None
def load_model(model_selected):
global qa_chain
model_name = model_selected
llm = CustomInferenceClient(model_name=model_name, hf_token=hf_token, kwargs=kwargs)
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=retriever,
return_source_documents=True,
verbose=True,
)
return qa_chain
load_model("meta-llama/Llama-2-70b-chat-hf")
##########
#####
#########
###
###
###
def predict(message, temperature=0.9, max_new_tokens=512, top_p=0.6, repetition_penalty=1.3):
temperature = float(temperature)
if temperature < 1e-2: temperature = 1e-2
top_p = float(top_p)
llm_response = qa_chain(message)
res_result = llm_response['result']
res_relevant_doc = [source.metadata['source'] for source in llm_response["source_documents"]]
response = f"{res_result}" + "\n\n" + "[Answer Source Documents (Ctrl + Click!)] :" + "\n" + f" \n {res_relevant_doc}"
print("response: =====> \n", response, "\n\n")
tokens = response.split('\n')
token_list = []
for idx, token in enumerate(tokens):
token_dict = {"id": idx + 1, "text": token}
token_list.append(token_dict)
response = {"data": {"token": token_list}}
response = json.dumps(response, indent=4)
response = json.loads(response)
data_dict = response.get('data', {})
token_list = data_dict.get('token', [])
partial_message = ""
for token_entry in token_list:
if token_entry:
try:
token_id = token_entry.get('id', None)
token_text = token_entry.get('text', None)
if token_text:
for char in token_text:
partial_message += char
yield partial_message
time.sleep(0.01)
else:
print(f"Warning ==> The key 'text' does not exist or is None in this token entry: {token_entry}")
pass
except KeyError as e:
gr.Warning(f"KeyError: {e} occurred for token entry: {token_entry}")
continue
class TextGeneratorTool(Tool):
name = "vector_retriever"
description = "This tool searches in a vector store based on a given prompt."
inputs = ["prompt"]
outputs = ["generated_text"]
def __init__(self):
#self.retriever = db.as_retriever(search_kwargs={"k": 1})
pass # You might want to add some initialization logic here
def __call__(self, prompt: str):
result = predict(prompt, 0.9, 512, 0.6, 1.4)
return result
|