|
import gradio as gr |
|
from langchain.document_loaders import DirectoryLoader, PyPDFLoader |
|
from langchain.vectorstores import Chroma |
|
from langchain.chains import RetrievalQA |
|
from langchain.embeddings import HuggingFaceInstructEmbeddings |
|
from langchain.agents import Tool |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain.llms import HuggingFacePipeline |
|
from transformers import LlamaTokenizer, LlamaForCausalLM, pipeline |
|
|
|
|
|
loader = DirectoryLoader('./new_papers/', glob="./*.pdf", loader_cls=PyPDFLoader) |
|
documents = loader.load() |
|
|
|
|
|
text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) |
|
texts = text_splitter.split_documents(documents) |
|
|
|
|
|
instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs={"device": "cuda"}) |
|
|
|
|
|
persist_directory = 'db' |
|
embedding = instructor_embeddings |
|
vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory) |
|
|
|
|
|
retriever = vectordb.as_retriever(search_kwargs={"k": 3}) |
|
|
|
|
|
tokenizer = LlamaTokenizer.from_pretrained("TheBloke/wizardLM-7B-HF") |
|
model = LlamaForCausalLM.from_pretrained("TheBloke/wizardLM-7B-HF", load_in_8bit=True, device_map='auto', torch_dtype=torch.float16, low_cpu_mem_usage=True) |
|
pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=1024, temperature=0, top_p=0.95, repetition_penalty=1.15) |
|
local_llm = HuggingFacePipeline(pipeline=pipe) |
|
|
|
|
|
qa_chain = RetrievalQA.from_chain_type(llm=local_llm, chain_type="stuff", retriever=retriever, return_source_documents=True) |
|
|
|
class VectorStoreRetrieverTool(Tool): |
|
name = "vectorstore_retriever" |
|
description = "This tool uses LangChain's RetrievalQA to find relevant answers from a vector store based on a given query." |
|
|
|
inputs = ["text"] |
|
outputs = ["text"] |
|
|
|
def __call__(self, query: str): |
|
|
|
llm_response = qa_chain(query) |
|
return llm_response['result'] |
|
|
|
|
|
tool = gr.Interface( |
|
VectorStoreRetrieverTool(), |
|
live=True, |
|
title="LangChain-Application: Vectorstore-Retriever", |
|
description="This tool uses LangChain's RetrievalQA to find relevant answers from a vector store based on a given query.", |
|
) |
|
|
|
|
|
tool.launch() |
|
|