rag-tool / app.py
Chris4K's picture
Update app.py
f7493dd
raw
history blame
1.94 kB
import gradio as gr
import os
from langchain.vectorstores import Chroma
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
# Use Hugging Face Inference API embeddings
inference_api_key = os.environ['HF']
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
api_key=inference_api_key,
model_name="sentence-transformers/all-MiniLM-l6-v2"
)
# Load and process the PDF files
loader = PyPDFLoader("new_papers/ReACT.pdf")
loader
documents = loader.load()
print("-----------")
print(documents)
print("-----------")
# Load the document, split it into chunks, embed each chunk and load it into the vector store.
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
vdocuments = text_splitter.split_documents(documents)
# Create Chroma vector store for API embeddings
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")
#api_db = Chroma.from_texts(documents, api_hf_embeddings, collection_name="api-collection")
#Similarity search
query = "What did the president say about Ketanji Brown Jackson"
docs = db.similarity_search(query)
print(docs[0].page_content)
class PDFRetrievalTool:
def __init__(self, retriever):
self.retriever = retriever
def __call__(self, query):
# Run the query through the retriever
response = self.retriever.run(query)
return response['result']
# Create Gradio interface for the API retriever
api_tool = gr.Interface(
PDFRetrievalTool(api_db.as_retriever(search_kwargs={"k": 1})),
inputs=gr.Textbox(),
outputs=gr.Textbox(),
live=True,
title="API PDF Retrieval Tool",
description="This tool indexes PDF documents and retrieves relevant answers based on a given query (HF Inference API Embeddings).",
)
# Launch the Gradio interface
api_tool.launch()