Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,40 @@
|
|
| 1 |
-
|
| 2 |
-
from
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from langchain.vectorstores import Chroma
|
| 3 |
+
from langchain.document_loaders import PyPDFLoader
|
| 4 |
+
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
| 5 |
|
| 6 |
+
# Initialize the HuggingFaceInstructEmbeddings
|
| 7 |
+
hf = HuggingFaceInstructEmbeddings(
|
| 8 |
+
model_name="hkunlp/instructor-large",
|
| 9 |
+
embed_instruction="Represent the document for retrieval: ",
|
| 10 |
+
query_instruction="Represent the query for retrieval: "
|
| 11 |
+
)
|
| 12 |
+
|
| 13 |
+
# Load and process the PDF files
|
| 14 |
+
loader = PyPDFLoader('./new_papers/', glob="./*.pdf")
|
| 15 |
+
documents = loader.load()
|
| 16 |
+
|
| 17 |
+
# Create a Chroma vector store from the PDF documents
|
| 18 |
+
db = Chroma.from_documents(documents, hf, collection_name="my-collection")
|
| 19 |
+
|
| 20 |
+
class PDFRetrievalTool:
|
| 21 |
+
def __init__(self):
|
| 22 |
+
self.retriever = db.as_retriever(search_kwargs={"k": 1})
|
| 23 |
+
|
| 24 |
+
def __call__(self, query):
|
| 25 |
+
# Run the query through the retriever
|
| 26 |
+
response = self.retriever.run(query)
|
| 27 |
+
return response['result']
|
| 28 |
+
|
| 29 |
+
# Create the Gradio interface using the PDFRetrievalTool
|
| 30 |
+
tool = gr.Interface(
|
| 31 |
+
PDFRetrievalTool(),
|
| 32 |
+
inputs=gr.Textbox(),
|
| 33 |
+
outputs=gr.Textbox(),
|
| 34 |
+
live=True,
|
| 35 |
+
title="PDF Retrieval Tool",
|
| 36 |
+
description="This tool indexes PDF documents and retrieves relevant answers based on a given query.",
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
# Launch the Gradio interface
|
| 40 |
+
tool.launch()
|