Update rag_tool.py
Browse files- rag_tool.py +26 -7
rag_tool.py
CHANGED
@@ -1,10 +1,10 @@
|
|
1 |
import os
|
2 |
from typing import Dict, List, Optional, Union, Any
|
3 |
from smolagents import Tool
|
4 |
-
from
|
5 |
-
from
|
6 |
-
from
|
7 |
-
from
|
8 |
from PyPDF2 import PdfReader
|
9 |
import json
|
10 |
|
@@ -23,11 +23,29 @@ class RAGTool(Tool):
|
|
23 |
"top_k": {
|
24 |
"type": "integer",
|
25 |
"description": "Number of most relevant documents to retrieve (default: 3)",
|
|
|
26 |
}
|
27 |
}
|
28 |
output_type = "string"
|
29 |
|
30 |
-
def __init__(self
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
31 |
documents_path: str = "./documents",
|
32 |
embedding_model: str = "BAAI/bge-small-en-v1.5",
|
33 |
vector_store_type: str = "faiss",
|
@@ -36,7 +54,7 @@ class RAGTool(Tool):
|
|
36 |
persist_directory: str = "./vector_store",
|
37 |
device: str = "cpu"):
|
38 |
"""
|
39 |
-
|
40 |
|
41 |
Args:
|
42 |
documents_path: Path to documents or folder containing documents
|
@@ -47,7 +65,6 @@ class RAGTool(Tool):
|
|
47 |
persist_directory: Directory to persist vector store
|
48 |
device: Device to run embedding model on ('cpu' or 'cuda')
|
49 |
"""
|
50 |
-
super().__init__()
|
51 |
self.documents_path = documents_path
|
52 |
self.embedding_model = embedding_model
|
53 |
self.vector_store_type = vector_store_type
|
@@ -60,6 +77,8 @@ class RAGTool(Tool):
|
|
60 |
os.makedirs(persist_directory, exist_ok=True)
|
61 |
self._setup_vector_store()
|
62 |
|
|
|
|
|
63 |
def _setup_vector_store(self):
|
64 |
"""Set up the vector store with documents if it doesn't exist"""
|
65 |
# Check if we need to create a new vector store
|
|
|
1 |
import os
|
2 |
from typing import Dict, List, Optional, Union, Any
|
3 |
from smolagents import Tool
|
4 |
+
from langchain_community.vectorstores import FAISS, Chroma
|
5 |
+
from langchain_community.embeddings import HuggingFaceBgeEmbeddings, HuggingFaceEmbeddings
|
6 |
+
from langchain_community.document_loaders import PyPDFLoader, TextLoader, DirectoryLoader
|
7 |
+
from langchain_text_splitters import CharacterTextSplitter, RecursiveCharacterTextSplitter
|
8 |
from PyPDF2 import PdfReader
|
9 |
import json
|
10 |
|
|
|
23 |
"top_k": {
|
24 |
"type": "integer",
|
25 |
"description": "Number of most relevant documents to retrieve (default: 3)",
|
26 |
+
"nullable": True
|
27 |
}
|
28 |
}
|
29 |
output_type = "string"
|
30 |
|
31 |
+
def __init__(self):
|
32 |
+
"""
|
33 |
+
Initialize the RAG Tool with default settings.
|
34 |
+
All configuration is done via class attributes or through the configure method.
|
35 |
+
"""
|
36 |
+
super().__init__()
|
37 |
+
self.documents_path = "./documents"
|
38 |
+
self.embedding_model = "BAAI/bge-small-en-v1.5"
|
39 |
+
self.vector_store_type = "faiss"
|
40 |
+
self.chunk_size = 1000
|
41 |
+
self.chunk_overlap = 200
|
42 |
+
self.persist_directory = "./vector_store"
|
43 |
+
self.device = "cpu"
|
44 |
+
|
45 |
+
# Don't automatically create storage initially, wait for explicit setup
|
46 |
+
self.vector_store = None
|
47 |
+
|
48 |
+
def configure(self,
|
49 |
documents_path: str = "./documents",
|
50 |
embedding_model: str = "BAAI/bge-small-en-v1.5",
|
51 |
vector_store_type: str = "faiss",
|
|
|
54 |
persist_directory: str = "./vector_store",
|
55 |
device: str = "cpu"):
|
56 |
"""
|
57 |
+
Configure the RAG Tool with custom parameters.
|
58 |
|
59 |
Args:
|
60 |
documents_path: Path to documents or folder containing documents
|
|
|
65 |
persist_directory: Directory to persist vector store
|
66 |
device: Device to run embedding model on ('cpu' or 'cuda')
|
67 |
"""
|
|
|
68 |
self.documents_path = documents_path
|
69 |
self.embedding_model = embedding_model
|
70 |
self.vector_store_type = vector_store_type
|
|
|
77 |
os.makedirs(persist_directory, exist_ok=True)
|
78 |
self._setup_vector_store()
|
79 |
|
80 |
+
return self
|
81 |
+
|
82 |
def _setup_vector_store(self):
|
83 |
"""Set up the vector store with documents if it doesn't exist"""
|
84 |
# Check if we need to create a new vector store
|