Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,7 @@ from langchain.vectorstores import Chroma
|
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
-
|
8 |
# Use Hugging Face Inference API embeddings
|
9 |
inference_api_key = os.environ['HF']
|
10 |
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
|
@@ -13,24 +13,19 @@ api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
|
|
13 |
)
|
14 |
|
15 |
# Load and process the PDF files
|
16 |
-
loader = PyPDFLoader("
|
17 |
documents = loader.load()
|
18 |
print("-----------")
|
19 |
print(documents)
|
20 |
print("-----------")
|
21 |
|
22 |
# Load the document, split it into chunks, embed each chunk, and load it into the vector store.
|
23 |
-
text_splitter = CharacterTextSplitter(chunk_size=
|
24 |
vdocuments = text_splitter.split_documents(documents)
|
25 |
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
# Create Chroma vector store for API embeddings
|
30 |
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")
|
31 |
|
32 |
-
print(api_db.similarity_search("What is react"))
|
33 |
-
|
34 |
# Define the PDF retrieval function
|
35 |
def pdf_retrieval(query):
|
36 |
# Run the query through the retriever
|
|
|
4 |
from langchain.document_loaders import PyPDFLoader
|
5 |
from langchain.text_splitter import CharacterTextSplitter
|
6 |
from langchain.embeddings import HuggingFaceInferenceAPIEmbeddings
|
7 |
+
|
8 |
# Use Hugging Face Inference API embeddings
|
9 |
inference_api_key = os.environ['HF']
|
10 |
api_hf_embeddings = HuggingFaceInferenceAPIEmbeddings(
|
|
|
13 |
)
|
14 |
|
15 |
# Load and process the PDF files
|
16 |
+
loader = PyPDFLoader("/content/ReACT.pdf")
|
17 |
documents = loader.load()
|
18 |
print("-----------")
|
19 |
print(documents)
|
20 |
print("-----------")
|
21 |
|
22 |
# Load the document, split it into chunks, embed each chunk, and load it into the vector store.
|
23 |
+
text_splitter = CharacterTextSplitter(chunk_size=1000, chunk_overlap=0)
|
24 |
vdocuments = text_splitter.split_documents(documents)
|
25 |
|
|
|
|
|
|
|
26 |
# Create Chroma vector store for API embeddings
|
27 |
api_db = Chroma.from_documents(vdocuments, api_hf_embeddings, collection_name="api-collection")
|
28 |
|
|
|
|
|
29 |
# Define the PDF retrieval function
|
30 |
def pdf_retrieval(query):
|
31 |
# Run the query through the retriever
|