Update app.py
Browse files
app.py
CHANGED
@@ -1,97 +1,80 @@
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
-
|
|
|
|
|
4 |
|
5 |
-
#
|
6 |
-
|
7 |
-
documents_path="./documents",
|
8 |
-
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
9 |
-
vector_store_type="faiss",
|
10 |
-
chunk_size=1000,
|
11 |
-
chunk_overlap=200,
|
12 |
-
persist_directory="./vector_store"
|
13 |
-
)
|
14 |
|
15 |
-
|
16 |
-
def upload_documents(files, chunk_size, chunk_overlap, embedding_model, vector_store_type):
|
17 |
-
# Create a temporary directory for uploaded files
|
18 |
-
os.makedirs("./uploaded_docs", exist_ok=True)
|
19 |
-
|
20 |
-
# Save uploaded files
|
21 |
-
for file in files:
|
22 |
-
file_path = os.path.join("./uploaded_docs", os.path.basename(file.name))
|
23 |
-
with open(file_path, "wb") as f:
|
24 |
-
f.write(file.read())
|
25 |
-
|
26 |
-
# Initialize a new RAG Tool with the uploaded documents
|
27 |
-
global rag_tool
|
28 |
-
rag_tool = RAGTool(
|
29 |
-
documents_path="./uploaded_docs",
|
30 |
-
embedding_model=embedding_model,
|
31 |
-
vector_store_type=vector_store_type,
|
32 |
-
chunk_size=int(chunk_size),
|
33 |
-
chunk_overlap=int(chunk_overlap),
|
34 |
-
persist_directory="./uploaded_vector_store"
|
35 |
-
)
|
36 |
-
|
37 |
-
return f"Documents uploaded and processed. Vector store created with {embedding_model} model."
|
38 |
|
39 |
-
#
|
40 |
-
|
41 |
-
global rag_tool
|
42 |
-
return rag_tool(query, top_k=int(top_k))
|
43 |
|
44 |
-
#
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
chunk_size = gr.Slider(200, 2000, value=1000, step=100, label="Chunk Size")
|
54 |
-
chunk_overlap = gr.Slider(0, 500, value=200, step=50, label="Chunk Overlap")
|
55 |
-
|
56 |
-
with gr.Column():
|
57 |
-
embedding_models = [
|
58 |
-
"sentence-transformers/all-MiniLM-L6-v2",
|
59 |
-
"BAAI/bge-small-en-v1.5",
|
60 |
-
"BAAI/bge-base-en-v1.5",
|
61 |
-
"thenlper/gte-small",
|
62 |
-
"thenlper/gte-base"
|
63 |
-
]
|
64 |
-
embedding_model = gr.Dropdown(
|
65 |
-
choices=embedding_models,
|
66 |
-
value="sentence-transformers/all-MiniLM-L6-v2",
|
67 |
-
label="Embedding Model"
|
68 |
-
)
|
69 |
-
vector_store_type = gr.Radio(
|
70 |
-
choices=["faiss", "chroma"],
|
71 |
-
value="faiss",
|
72 |
-
label="Vector Store Type"
|
73 |
-
)
|
74 |
|
75 |
-
|
76 |
-
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
|
|
82 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
83 |
|
84 |
-
with gr.
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
95 |
|
96 |
# Launch the app
|
97 |
if __name__ == "__main__":
|
|
|
1 |
import os
|
2 |
import gradio as gr
|
3 |
+
import warnings
|
4 |
+
from pathlib import Path
|
5 |
+
import shutil
|
6 |
|
7 |
+
# Suppress LangChain deprecation warnings
|
8 |
+
warnings.filterwarnings("ignore", category=DeprecationWarning)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
+
from rag_tool import RAGTool
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
11 |
|
12 |
+
# Initialize the RAG Tool
|
13 |
+
rag_tool = RAGTool()
|
|
|
|
|
14 |
|
15 |
+
# Function to handle document uploads
|
16 |
+
def upload_file(file):
|
17 |
+
try:
|
18 |
+
# Create documents directory if it doesn't exist
|
19 |
+
os.makedirs("./documents", exist_ok=True)
|
20 |
+
|
21 |
+
# Get the file path and name
|
22 |
+
file_path = Path(file.name)
|
23 |
+
destination = Path("./documents") / file_path.name
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
# Copy the file to documents directory
|
26 |
+
shutil.copy(file_path, destination)
|
27 |
|
28 |
+
# Configure RAG tool
|
29 |
+
rag_tool.configure(
|
30 |
+
documents_path=str(destination),
|
31 |
+
embedding_model="sentence-transformers/all-MiniLM-L6-v2",
|
32 |
+
persist_directory="./vector_store"
|
33 |
)
|
34 |
+
|
35 |
+
return f"File uploaded and processed: {file_path.name}"
|
36 |
+
except Exception as e:
|
37 |
+
return f"Error processing file: {str(e)}"
|
38 |
+
|
39 |
+
# Function to query the documents
|
40 |
+
def query_document(question):
|
41 |
+
try:
|
42 |
+
if not hasattr(rag_tool, 'vector_store') or rag_tool.vector_store is None:
|
43 |
+
return "Please upload a document first."
|
44 |
+
|
45 |
+
response = rag_tool(question)
|
46 |
+
return response
|
47 |
+
except Exception as e:
|
48 |
+
return f"Error querying document: {str(e)}"
|
49 |
+
|
50 |
+
# Create a simple Gradio interface
|
51 |
+
with gr.Blocks(title="RAG Tool") as demo:
|
52 |
+
gr.Markdown("# Document Question Answering System")
|
53 |
+
gr.Markdown("Upload a document (PDF, TXT) and ask questions about it")
|
54 |
|
55 |
+
with gr.Row():
|
56 |
+
with gr.Column():
|
57 |
+
file_input = gr.File(label="Upload Document")
|
58 |
+
upload_button = gr.Button("Process Document")
|
59 |
+
upload_result = gr.Textbox(label="Upload Status")
|
60 |
|
61 |
+
with gr.Column():
|
62 |
+
query_input = gr.Textbox(label="Ask a Question", placeholder="What would you like to know?")
|
63 |
+
query_button = gr.Button("Get Answer")
|
64 |
+
response_output = gr.Textbox(label="Answer")
|
65 |
+
|
66 |
+
# Set up the button click events
|
67 |
+
upload_button.click(
|
68 |
+
upload_file,
|
69 |
+
inputs=file_input,
|
70 |
+
outputs=upload_result
|
71 |
+
)
|
72 |
+
|
73 |
+
query_button.click(
|
74 |
+
query_document,
|
75 |
+
inputs=query_input,
|
76 |
+
outputs=response_output
|
77 |
+
)
|
78 |
|
79 |
# Launch the app
|
80 |
if __name__ == "__main__":
|