Update vector_store_retriever.py
Browse files- vector_store_retriever.py +29 -10
vector_store_retriever.py
CHANGED
@@ -3,32 +3,51 @@ import os
|
|
3 |
import gradio as gr
|
4 |
import time
|
5 |
from pydantic import BaseModel, Field
|
6 |
-
from typing import Any, Optional, Dict, List
|
7 |
from huggingface_hub import InferenceClient
|
8 |
-
from langchain.llms.base import LLM
|
9 |
-
from langchain.embeddings import HuggingFaceInstructEmbeddings
|
10 |
from langchain.vectorstores import Chroma
|
11 |
from dotenv import load_dotenv
|
12 |
-
from transformers import AutoTokenizer
|
13 |
-
from transformers import Tool
|
14 |
|
15 |
load_dotenv()
|
16 |
|
17 |
path_work = "."
|
18 |
hf_token = os.getenv("HF")
|
19 |
|
20 |
-
|
21 |
-
model_name=
|
22 |
-
|
23 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
vectordb = Chroma(
|
26 |
persist_directory=path_work + '/new_papers',
|
27 |
-
embedding_function=
|
28 |
)
|
29 |
|
30 |
retriever = vectordb.as_retriever(search_kwargs={"k": 2})#5
|
31 |
|
|
|
32 |
class KwArgsModel(BaseModel):
|
33 |
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
34 |
|
|
|
3 |
import gradio as gr
|
4 |
import time
|
5 |
from pydantic import BaseModel, Field
|
6 |
+
from typing import Any, Optional, Dict, List, Union
|
7 |
from huggingface_hub import InferenceClient
|
8 |
+
from langchain.llms.base import LLM, Documents, Images, EmbeddingFunction, Embeddings
|
|
|
9 |
from langchain.vectorstores import Chroma
|
10 |
from dotenv import load_dotenv
|
11 |
+
from transformers import AutoTokenizer, AutoModel, Tool
|
|
|
12 |
|
13 |
load_dotenv()
|
14 |
|
15 |
path_work = "."
|
16 |
hf_token = os.getenv("HF")
|
17 |
|
18 |
+
class HuggingFaceInstructEmbeddings(EmbeddingFunction):
|
19 |
+
def __init__(self, model_name: str, model_kwargs: Optional[Dict[str, Any]] = None):
|
20 |
+
self.model = AutoModel.from_pretrained(model_name, **(model_kwargs or {}))
|
21 |
+
self.tokenizer = AutoTokenizer.from_pretrained(model_name)
|
22 |
+
|
23 |
+
def __call__(self, input: Union[Documents, Images]) -> Embeddings:
|
24 |
+
if isinstance(input, Documents):
|
25 |
+
texts = [doc.text for doc in input]
|
26 |
+
embeddings = self._embed_text(texts)
|
27 |
+
else:
|
28 |
+
# Handle image embeddings if needed
|
29 |
+
pass
|
30 |
+
|
31 |
+
return embeddings
|
32 |
+
|
33 |
+
def _embed_text(self, texts: List[str]) -> Embeddings:
|
34 |
+
# Your existing logic for text embeddings using Hugging Face models...
|
35 |
+
inputs = self.tokenizer(texts, return_tensors="pt", padding=True, truncation=True)
|
36 |
+
with torch.no_grad():
|
37 |
+
outputs = self.model(**inputs)
|
38 |
+
embeddings = outputs.last_hidden_state.mean(dim=1) # Adjust this based on your specific model
|
39 |
+
|
40 |
+
return embeddings
|
41 |
+
|
42 |
|
43 |
vectordb = Chroma(
|
44 |
persist_directory=path_work + '/new_papers',
|
45 |
+
embedding_function=HuggingFaceInstructEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2", model_kwargs={"device": "cpu"})
|
46 |
)
|
47 |
|
48 |
retriever = vectordb.as_retriever(search_kwargs={"k": 2})#5
|
49 |
|
50 |
+
|
51 |
class KwArgsModel(BaseModel):
|
52 |
kwargs: Dict[str, Any] = Field(default_factory=dict)
|
53 |
|