import gradio as gr from langchain.document_loaders import DirectoryLoader, PyPDFLoader from langchain.vectorstores import Chroma from langchain.chains import RetrievalQA from langchain.embeddings import HuggingFaceInstructEmbeddings from langchain.agents import Tool from langchain.text_splitter import RecursiveCharacterTextSplitter from langchain.llms import HuggingFacePipeline from transformers import LlamaTokenizer, LlamaForCausalLM, pipeline # Load and process the text files loader = DirectoryLoader('./new_papers/', glob="./*.pdf", loader_cls=PyPDFLoader) documents = loader.load() # Splitting the text into chunks text_splitter = RecursiveCharacterTextSplitter(chunk_size=1000, chunk_overlap=200) texts = text_splitter.split_documents(documents) # HF Instructor Embeddings instructor_embeddings = HuggingFaceInstructEmbeddings(model_name="hkunlp/instructor-xl", model_kwargs={"device": "cuda"}) # Embed and store the texts persist_directory = 'db' embedding = instructor_embeddings vectordb = Chroma.from_documents(documents=texts, embedding=embedding, persist_directory=persist_directory) # Make a retriever retriever = vectordb.as_retriever(search_kwargs={"k": 3}) # Setup LLM for text generation tokenizer = LlamaTokenizer.from_pretrained("TheBloke/wizardLM-7B-HF") model = LlamaForCausalLM.from_pretrained("TheBloke/wizardLM-7B-HF", load_in_8bit=True, device_map='auto', torch_dtype=torch.float16, low_cpu_mem_usage=True) pipe = pipeline("text-generation", model=model, tokenizer=tokenizer, max_length=1024, temperature=0, top_p=0.95, repetition_penalty=1.15) local_llm = HuggingFacePipeline(pipeline=pipe) # Make a chain qa_chain = RetrievalQA.from_chain_type(llm=local_llm, chain_type="stuff", retriever=retriever, return_source_documents=True) class VectorStoreRetrieverTool(Tool): name = "vectorstore_retriever" description = "This tool uses LangChain's RetrievalQA to find relevant answers from a vector store based on a given query." inputs = ["text"] outputs = ["text"] def __call__(self, query: str): # Run the query through the RetrievalQA chain llm_response = qa_chain(query) return llm_response['result'] # Create the Gradio interface using the HuggingFaceTool tool = gr.Interface( VectorStoreRetrieverTool(), live=True, title="LangChain-Application: Vectorstore-Retriever", description="This tool uses LangChain's RetrievalQA to find relevant answers from a vector store based on a given query.", ) # Launch the Gradio interface tool.launch()