Spaces:
Sleeping
Sleeping
File size: 1,337 Bytes
c2f577f 3875537 c2f577f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
import requests
class SentimentAnalysisTool:
name = "sentiment_analysis"
description = "This tool analyses the sentiment of a given text input."
inputs = ["text"] # Adding an empty list for inputs
outputs = ["json"]
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
model_id_2 = "microsoft/deberta-xlarge-mnli"
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
model_id_4 = "lordtt13/emo-mobilebert"
model_id_5 = "juliensimon/reviews-sentiment-analysis"
model_id_6 = "sbcBI/sentiment_analysis_model"
model_id_7 = "models/oliverguhr/german-sentiment-bert"
def parse_output(output_json):
list_pred=[]
for i in range(len(output_json[0])):
label = output_json[0][i]['label']
score = output_json[0][i]['score']
list_pred.append((label, score))
return list_pred
def get_prediction(model_id):
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
def predict(review):
classifier = get_prediction(model_id_7)
prediction = classifier(review)
print(prediction)
return parse_output(prediction)
def __call__(self, inputs: str):
return predict(str)
|