Spaces:
Sleeping
Sleeping
Update sentiment_analysis.py
Browse files- sentiment_analysis.py +28 -25
sentiment_analysis.py
CHANGED
@@ -1,4 +1,6 @@
|
|
1 |
import requests
|
|
|
|
|
2 |
|
3 |
class SentimentAnalysisTool:
|
4 |
name = "sentiment_analysis"
|
@@ -8,33 +10,34 @@ class SentimentAnalysisTool:
|
|
8 |
|
9 |
outputs = ["json"]
|
10 |
|
11 |
-
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
|
12 |
-
model_id_2 = "microsoft/deberta-xlarge-mnli"
|
13 |
-
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
|
14 |
-
model_id_4 = "lordtt13/emo-mobilebert"
|
15 |
-
model_id_5 = "juliensimon/reviews-sentiment-analysis"
|
16 |
-
model_id_6 = "sbcBI/sentiment_analysis_model"
|
17 |
-
model_id_7 = "models/oliverguhr/german-sentiment-bert"
|
18 |
-
|
19 |
-
def parse_output(output_json):
|
20 |
-
list_pred=[]
|
21 |
-
for i in range(len(output_json[0])):
|
22 |
-
label = output_json[0][i]['label']
|
23 |
-
score = output_json[0][i]['score']
|
24 |
-
list_pred.append((label, score))
|
25 |
-
return list_pred
|
26 |
-
|
27 |
-
def get_prediction(model_id):
|
28 |
-
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
29 |
-
|
30 |
-
def predicto(review):
|
31 |
-
classifier = SentimentAnalysisTool.get_prediction(SentimentAnalysisTool.model_id_7)
|
32 |
-
prediction = classifier(review)
|
33 |
-
print(prediction)
|
34 |
-
return SentimentAnalysisTool.parse_output(prediction)
|
35 |
-
|
36 |
def __call__(self, inputs: str):
|
37 |
return SentimentAnalysisTool.predicto(str)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
|
40 |
|
|
|
1 |
import requests
|
2 |
+
import gradio as gr
|
3 |
+
from transformers import pipeline
|
4 |
|
5 |
class SentimentAnalysisTool:
|
6 |
name = "sentiment_analysis"
|
|
|
10 |
|
11 |
outputs = ["json"]
|
12 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
13 |
def __call__(self, inputs: str):
|
14 |
return SentimentAnalysisTool.predicto(str)
|
15 |
+
|
16 |
+
model_id_1 = "nlptown/bert-base-multilingual-uncased-sentiment"
|
17 |
+
model_id_2 = "microsoft/deberta-xlarge-mnli"
|
18 |
+
model_id_3 = "distilbert-base-uncased-finetuned-sst-2-english"
|
19 |
+
model_id_4 = "lordtt13/emo-mobilebert"
|
20 |
+
model_id_5 = "juliensimon/reviews-sentiment-analysis"
|
21 |
+
model_id_6 = "sbcBI/sentiment_analysis_model"
|
22 |
+
model_id_7 = "models/oliverguhr/german-sentiment-bert"
|
23 |
+
|
24 |
+
def parse_output(output_json):
|
25 |
+
list_pred=[]
|
26 |
+
for i in range(len(output_json[0])):
|
27 |
+
label = output_json[0][i]['label']
|
28 |
+
score = output_json[0][i]['score']
|
29 |
+
list_pred.append((label, score))
|
30 |
+
return list_pred
|
31 |
+
|
32 |
+
def get_prediction(model_id):
|
33 |
+
classifier = pipeline("text-classification", model=model_id, return_all_scores=True)
|
34 |
+
|
35 |
+
def predicto(review):
|
36 |
+
classifier = SentimentAnalysisTool.get_prediction(SentimentAnalysisTool.model_id_7)
|
37 |
+
prediction = classifier(review)
|
38 |
+
print(prediction)
|
39 |
+
return SentimentAnalysisTool.parse_output(prediction)
|
40 |
+
|
41 |
|
42 |
|
43 |
|