import requests from transformers import Tool from transformers import pipeline class TextGenerationTool(Tool): name = "text_generator" description = ( "This is a tool for text generation. It takes a prompt as input and returns the generated text." ) inputs = ["text"] outputs = ["text"] def __call__(self, prompt: str): API_URL = "https://api-inference.huggingface.co/models/lukasdrg/clinical_longformer_same_tokens_220k" headers = {"Authorization": "Bearer "+os.environ['HF']+"} #def query(payload): generated_text = requests.post(API_URL, headers=headers, json=payload) # return response.json() #output = query({ # "inputs": "The answer to the universe is .", #}) # Replace the following line with your text generation logic #generated_text = f"Generated text based on the prompt: '{prompt}'" # Initialize the text generation pipeline #text_generator = pipeline("text-generation") llama mistralai/Mistral-7B-Instruct-v0.1 #text_generator = pipeline(model="gpt2") #text_generator = pipeline(model="meta-llama/Llama-2-7b-chat-hf") # Generate text based on a prompt #generated_text = text_generator(prompt, max_length=500, num_return_sequences=1, temperature=0.7) # Print the generated text #print(generated_text) return generated_text