Update textify_text.py
Browse files- textify_text.py +143 -2
textify_text.py
CHANGED
@@ -1,15 +1,156 @@
|
|
1 |
from transformers import AutoTokenizer
|
2 |
from transformers import Tool
|
3 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
class TextifyTextTool(Tool):
|
5 |
name = "token_counter"
|
6 |
-
description = "This is a tool for
|
7 |
inputs = ["text"]
|
8 |
outputs = ["text"]
|
9 |
|
10 |
def __call__(self, prompt: str):
|
|
|
|
|
|
|
11 |
# token = os.environ['hf']
|
12 |
tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2-dolly")
|
13 |
tokens = tokenizer(prompt)["input_ids"]
|
14 |
-
return f"{
|
15 |
|
|
|
1 |
from transformers import AutoTokenizer
|
2 |
from transformers import Tool
|
3 |
|
4 |
+
|
5 |
+
#####
|
6 |
+
## https://github.com/Jcharis/textify/tree/master/textify
|
7 |
+
## pip install textify
|
8 |
+
####
|
9 |
+
# Patterns
|
10 |
+
EMAIL_REGEX = re.compile(r"[\w\.-]+@[\w\.-]+")
|
11 |
+
PHONE_REGEX = re.compile(r"[\+\(]?[1-9][0-9 .\-\(\)]{8,}[0-9]")
|
12 |
+
NUMBERS_REGEX = re.compile(r"\d+")
|
13 |
+
SPECIAL_CHARACTERS_REGEX = re.compile(r"[^A-Za-z0-9 ]+")
|
14 |
+
EMOJI_REGEX = re.compile("["
|
15 |
+
u"\U0001F600-\U0001F64F" # emoticons
|
16 |
+
u"\U0001F300-\U0001F5FF" # symbols & pictographs
|
17 |
+
u"\U0001F680-\U0001F6FF" # transport & map symbols
|
18 |
+
u"\U0001F1E0-\U0001F1FF" # flags (iOS)
|
19 |
+
u"\U00002702-\U000027B0"
|
20 |
+
u"\U000024C2-\U0001F251"
|
21 |
+
"]+", flags=re.UNICODE)
|
22 |
+
|
23 |
+
CURRENCIES = {
|
24 |
+
"$": "USD",
|
25 |
+
"zł": "PLN",
|
26 |
+
"£": "GBP",
|
27 |
+
"¥": "JPY",
|
28 |
+
"฿": "THB",
|
29 |
+
"₡": "CRC",
|
30 |
+
"₦": "NGN",
|
31 |
+
"₩": "KRW",
|
32 |
+
"₪": "ILS",
|
33 |
+
"₫": "VND",
|
34 |
+
"€": "EUR",
|
35 |
+
"₱": "PHP",
|
36 |
+
"₲": "PYG",
|
37 |
+
"₴": "UAH",
|
38 |
+
"₹": "INR",
|
39 |
+
}
|
40 |
+
CURRENCY_REGEX = re.compile(
|
41 |
+
"({})+".format("|".join(re.escape(c) for c in CURRENCIES.keys()))
|
42 |
+
)
|
43 |
+
|
44 |
+
|
45 |
+
|
46 |
+
class TextCleaner(object):
|
47 |
+
"""TextCleaner: Class For Text Cleaning
|
48 |
+
usage
|
49 |
+
docx = TextCleaner()
|
50 |
+
docx.text = "this is [email protected] and you can reach me at +380994777888 at 5pm#"
|
51 |
+
|
52 |
+
"""
|
53 |
+
def __init__(self, text=None):
|
54 |
+
super(TextCleaner, self).__init__()
|
55 |
+
self.text = text
|
56 |
+
|
57 |
+
def __repr__(self):
|
58 |
+
return "TextCleaner(text={})".format(self.text)
|
59 |
+
|
60 |
+
def remove_emails(self):
|
61 |
+
result = re.sub(EMAIL_REGEX,"",self.text)
|
62 |
+
return result
|
63 |
+
|
64 |
+
def remove_phone_numbers(self):
|
65 |
+
result = re.sub(PHONE_REGEX,"",self.text)
|
66 |
+
return result
|
67 |
+
|
68 |
+
def remove_numbers(self):
|
69 |
+
result = re.sub(NUMBERS_REGEX,"",self.text)
|
70 |
+
return result
|
71 |
+
|
72 |
+
def remove_special_characters(self):
|
73 |
+
result = re.sub(SPECIAL_CHARACTERS_REGEX,"",self.text)
|
74 |
+
return result
|
75 |
+
|
76 |
+
def remove_emojis(self):
|
77 |
+
result = re.sub(EMOJI_REGEX,"",self.text)
|
78 |
+
return result
|
79 |
+
|
80 |
+
def replace_emails(self,replace_with="<EMAIL>"):
|
81 |
+
result = re.sub(EMAIL_REGEX,replace_with,self.text)
|
82 |
+
return result
|
83 |
+
|
84 |
+
def replace_phone_numbers(self,replace_with="<PHONENUMBER>"):
|
85 |
+
result = re.sub(PHONE_REGEX,replace_with,self.text)
|
86 |
+
return result
|
87 |
+
|
88 |
+
def replace_numbers(self,replace_with="<NUMBER>"):
|
89 |
+
result = re.sub(NUMBERS_REGEX,replace_with,self.text)
|
90 |
+
return result
|
91 |
+
|
92 |
+
def replace_special_characters(self,replace_with="<SPECIAL_CHAR>"):
|
93 |
+
result = re.sub(SPECIAL_CHARACTERS_REGEX,replace_with,self.text)
|
94 |
+
return result
|
95 |
+
|
96 |
+
|
97 |
+
def clean_text(self,preserve=False):
|
98 |
+
if preserve == False:
|
99 |
+
email_result = re.sub(EMAIL_REGEX,"",self.text)
|
100 |
+
phone_result = re.sub(PHONE_REGEX,"",email_result)
|
101 |
+
number_result = re.sub(NUMBERS_REGEX,"",phone_result)
|
102 |
+
emoji_result = re.sub(EMOJI_REGEX,"",number_result)
|
103 |
+
special_char_result = re.sub(SPECIAL_CHARACTERS_REGEX,"",emoji_result)
|
104 |
+
final_result = special_char_result.lower()
|
105 |
+
|
106 |
+
else:
|
107 |
+
special_char_result = re.sub(r'[^A-Za-z0-9@ ]+',"",self.text)
|
108 |
+
email_result = re.sub(EMAIL_REGEX,"<EMAIL>",special_char_result)
|
109 |
+
phone_result = re.sub(PHONE_REGEX,"<PHONENUMBER>",email_result)
|
110 |
+
number_result = re.sub(NUMBERS_REGEX,"<NUMBERS>",phone_result)
|
111 |
+
final_result = number_result.lower()
|
112 |
+
|
113 |
+
return final_result
|
114 |
+
|
115 |
+
|
116 |
+
class TextExtractor(TextCleaner):
|
117 |
+
"""TextExtractor - Extract emails,numbers and phone numbers from text"""
|
118 |
+
def __init__(self, text=None):
|
119 |
+
super(TextExtractor, self).__init__()
|
120 |
+
self.text = text
|
121 |
+
|
122 |
+
def __repr__(self):
|
123 |
+
return "TextExtractor(text={})".format(self.text)
|
124 |
+
|
125 |
+
def extract_emails(self):
|
126 |
+
match = re.findall(EMAIL_REGEX,self.text)
|
127 |
+
return match
|
128 |
+
|
129 |
+
def extract_phone_numbers(self):
|
130 |
+
match = re.findall(PHONE_REGEX,self.text)
|
131 |
+
return match
|
132 |
+
|
133 |
+
def extract_numbers(self):
|
134 |
+
match = re.findall(NUMBERS_REGEX,self.text)
|
135 |
+
return match
|
136 |
+
|
137 |
+
def extract_emojis(self):
|
138 |
+
match = re.findall(EMOJI_REGEX,self.text)
|
139 |
+
return match
|
140 |
+
|
141 |
+
|
142 |
class TextifyTextTool(Tool):
|
143 |
name = "token_counter"
|
144 |
+
description = "This is a tool for cleaning text. It removes bad, unused characters."
|
145 |
inputs = ["text"]
|
146 |
outputs = ["text"]
|
147 |
|
148 |
def __call__(self, prompt: str):
|
149 |
+
docx = TextCleaner()
|
150 |
+
docx.text = "your text goes here"
|
151 |
+
docx.clean_text()
|
152 |
# token = os.environ['hf']
|
153 |
tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2-dolly")
|
154 |
tokens = tokenizer(prompt)["input_ids"]
|
155 |
+
return f"{docx.text}"
|
156 |
|