from transformers import AutoTokenizer def tokenize(input_text): tokens = tokenizer(input_text)["input_ids"] return f"Number of tokens: {len(tokens)}" tokenize_tool = gr.Interface( fn=tokenize, inputs=gr.Textbox(lines=7, label="Input Text"), outputs=gr.Textbox(label="Tokenization Result"), live=True, title="GPT-2 Tokenizer", description="This tool tokenizes input text using the lgaalves/gpt2-dolly model.", ) tokenize_tool.launch() import os from transformers import pipeline from transformers import Tool class TokenCounterTool(Tool): name = "text_generator" description = "This is a tool for counting token used by a prompt. It takes a prompt as input and returns the generated text." inputs = ["text"] outputs = ["text"] def __call__(self, prompt: str): token = os.environ['hf'] tokenizer = AutoTokenizer.from_pretrained("lgaalves/gpt2-dolly") tokens = tokenizer(input_text)["input_ids"] return f"Number of tokens: {len(tokens)}"