import gradio as gr from tensorflow.keras.models import load_model from tensorflow.keras.preprocessing import image import numpy as np from PIL import Image model = load_model("Model_1.keras") def predict_image(img): img = img.resize((256, 256)) img_array = np.array(img) / 255.0 img_array = np.expand_dims(img_array, axis=0) prediction = model.predict(img_array) class_names = ["Fake","Real"] predicted_class = np.argmax(prediction[0]) confidence = prediction[0][predicted_class] return f"Prediction: {class_names[predicted_class]} (Confidence: {confidence:.2f})" interface = gr.Interface( fn=predict_image, inputs=gr.Image(type="pil"), outputs="text", title="Détection d'images générées par l'IA" ) interface.launch("share=True")