File size: 3,731 Bytes
d761518 3285669 d761518 4203a70 3285669 d761518 3285669 9d7aa3b 3285669 479ad59 3285669 479ad59 3285669 9f972ce 3285669 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 |
import torch
from PIL import Image
from RealESRGAN import RealESRGAN
import gradio as gr
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=True)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=True)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=True)
def inference_image(image, size):
global model2
global model4
global model8
if image is None:
raise gr.Error("Image not uploaded")
width, height = image.size
if width >= 5000 or height >= 5000:
raise gr.Error("The image is too large.")
if torch.cuda.is_available():
torch.cuda.empty_cache()
if size == '2x':
try:
result = model2.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model2 = RealESRGAN(device, scale=2)
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
result = model2.predict(image.convert('RGB'))
elif size == '4x':
try:
result = model4.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model4 = RealESRGAN(device, scale=4)
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
result = model2.predict(image.convert('RGB'))
else:
try:
result = model8.predict(image.convert('RGB'))
except torch.cuda.OutOfMemoryError as e:
print(e)
model8 = RealESRGAN(device, scale=8)
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
result = model2.predict(image.convert('RGB'))
print(f"Image size ({device}): {size} ... OK")
return result
input_image = gr.Image(type='pil', label='Input Image')
input_model_image = gr.Radio(['2x', '4x', '8x'], type="value", value="4x", label="Model Upscale/Enhance Type")
submit_image_button = gr.Button('Submit')
output_image = gr.Image(type="filepath", label="Output Image")
tab_img = gr.Interface(
fn=inference_image,
inputs=[input_image, input_model_image],
outputs=output_image,
title="Real-ESRGAN Pytorch",
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your image, or click one of examples and choose the model. Read more at the links below. Please click submit only once <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>"
)
input_video = gr.Video(label='Input Video')
input_model_video = gr.Radio(['2x', '4x', '8x'], type="value", value="4x", label="Model Upscale/Enhance Type")
submit_video_button = gr.Button('Submit')
output_video = gr.Video(label='Output Video')
tab_vid = gr.Interface(
fn=inference_image,
inputs=[input_video, input_model_video],
outputs=output_video,
title="Real-ESRGAN Pytorch",
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your video, or click one of examples and choose the model. Read more at the links below. Please click submit only once <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>"
)
demo = gr.TabbedInterface([tab_img, tab_vid], ["Image", "Video"])
demo.launch(debug=True, show_error=True) |