File size: 8,102 Bytes
9bdccea |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 |
# import cv2
# from os.path import isfile, join
# import subprocess
# import os
# from RealESRGAN import RealESRGAN
# import torch
# import gradio as gr
# IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')
# def inference_image(image, size):
# global model2
# global model4
# global model8
# if image is None:
# raise gr.Error("Image not uploaded")
# width, height = image.size
# if width >= 5000 or height >= 5000:
# raise gr.Error("The image is too large.")
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# if size == '2x':
# try:
# result = model2.predict(image.convert('RGB'))
# except torch.cuda.OutOfMemoryError as e:
# print(e)
# model2 = RealESRGAN(device, scale=2)
# model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
# result = model2.predict(image.convert('RGB'))
# elif size == '4x':
# try:
# result = model4.predict(image.convert('RGB'))
# except torch.cuda.OutOfMemoryError as e:
# print(e)
# model4 = RealESRGAN(device, scale=4)
# model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
# result = model2.predict(image.convert('RGB'))
# else:
# try:
# result = model8.predict(image.convert('RGB'))
# except torch.cuda.OutOfMemoryError as e:
# print(e)
# model8 = RealESRGAN(device, scale=8)
# model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
# result = model2.predict(image.convert('RGB'))
# print(f"Frame of the Video size ({device}): {size} ... OK")
# return result
# # assign directory
# directory = 'videos' #PATH_WITH_INPUT_VIDEOS
# zee = 0
# def convert_frames_to_video(pathIn,pathOut,fps):
# global INPUT_DIR
# cap = cv2.VideoCapture(f'/{INPUT_DIR}/videos/input.mp4')
# fps = cap.get(cv2.CAP_PROP_FPS)
# frame_array = []
# files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))]
# #for sorting the file names properly
# files.sort(key = lambda x: int(x[5:-4]))
# size2 = (0,0)
# for i in range(len(files)):
# filename=pathIn + files[i]
# #reading each files
# img = cv2.imread(filename)
# height, width, layers = img.shape
# size = (width,height)
# size2 = size
# print(filename)
# #inserting the frames into an image array
# frame_array.append(img)
# out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size2)
# for i in range(len(frame_array)):
# # writing to a image array
# out.write(frame_array[i])
# out.release()
# for filename in os.listdir(directory):
# f = os.path.join(directory, filename)
# # checking if it is a file
# if os.path.isfile(f):
# print("PROCESSING :"+str(f)+"\n")
# # Read the video from specified path
# #video to frames
# cam = cv2.VideoCapture(str(f))
# try:
# # PATH TO STORE VIDEO FRAMES
# if not os.path.exists(f'/{INPUT_DIR}/upload/'):
# os.makedirs(f'/{INPUT_DIR}/upload/')
# # if not created then raise error
# except OSError:
# print ('Error: Creating directory of data')
# # frame
# currentframe = 0
# while(True):
# # reading from frame
# ret,frame = cam.read()
# if ret:
# # if video is still left continue creating images
# name = f'/{INPUT_DIR}/upload/frame' + str(currentframe) + '.jpg'
# # writing the extracted images
# cv2.imwrite(name, frame)
# # increasing counter so that it will
# # show how many frames are created
# currentframe += 1
# print(currentframe)
# else:
# #deletes all the videos you uploaded for upscaling
# #for f in os.listdir(video_folder):
# # os.remove(os.path.join(video_folder, f))
# break
# # Release all space and windows once done
# cam.release()
# cv2.destroyAllWindows()
# #apply super-resolution on all frames of a video
# # Specify the directory path
# all_frames_path = f"/{INPUT_DIR}/upload/"
# # Get a list of all files in the directory
# file_names = os.listdir(all_frames_path)
# # process the files
# for file_name in file_names:
# inference_image(f"/{INPUT_DIR}/upload/{file_name}")
# #convert super res frames to .avi
# pathIn = f'/{INPUT_DIR}/results/restored_imgs/'
# zee = zee+1
# fName = "video"+str(zee)
# filenameVid = f"{fName}.avi"
# pathOut = f"/{INPUT_DIR}/results_videos/"+filenameVid
# convert_frames_to_video(pathIn, pathOut, fps)
# #convert .avi to .mp4
# src = f'/{INPUT_DIR}/results_videos/'
# dst = f'/{INPUT_DIR}/results_mp4_videos/'
# for root, dirs, filenames in os.walk(src, topdown=False):
# #print(filenames)
# for filename in filenames:
# print('[INFO] 1',filename)
# try:
# _format = ''
# if ".flv" in filename.lower():
# _format=".flv"
# if ".mp4" in filename.lower():
# _format=".mp4"
# if ".avi" in filename.lower():
# _format=".avi"
# if ".mov" in filename.lower():
# _format=".mov"
# inputfile = os.path.join(root, filename)
# print('[INFO] 1',inputfile)
# outputfile = os.path.join(dst, filename.lower().replace(_format, ".mp4"))
# subprocess.call(['ffmpeg', '-i', inputfile, outputfile])
# except:
# print("An exception occurred")
from PIL import Image
import cv2 as cv
import torch
from RealESRGAN import RealESRGAN
import tempfile
import numpy as np
import tqdm
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def infer_image(img: Image.Image, size_modifier: int ) -> Image.Image:
if img is None:
raise Exception("Image not uploaded")
width, height = img.size
if width >= 5000 or height >= 5000:
raise Exception("The image is too large.")
model = RealESRGAN(device, scale=size_modifier)
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
result = model.predict(img.convert('RGB'))
print(f"Image size ({device}): {size_modifier} ... OK")
return result
def infer_video(video_filepath: str, size_modifier: int) -> str:
model = RealESRGAN(device, scale=size_modifier)
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
cap = cv.VideoCapture(video_filepath)
tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
vid_output = tmpfile.name
tmpfile.close()
vid_writer = cv.VideoWriter(
vid_output,
fourcc=cv.VideoWriter.fourcc(*'mp4v'),
fps=cap.get(cv.CAP_PROP_FPS),
frameSize=(int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) * size_modifier, int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) * size_modifier)
)
n_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
# while cap.isOpened():
for _ in tqdm.tqdm(range(n_frames)):
ret, frame = cap.read()
if not ret:
break
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
upscaled_frame = model.predict(frame.convert('RGB'))
upscaled_frame = np.array(upscaled_frame)
upscaled_frame = cv.cvtColor(upscaled_frame, cv.COLOR_RGB2BGR)
print(upscaled_frame.shape)
vid_writer.write(upscaled_frame)
vid_writer.release()
print(f"Video file : {video_filepath}")
return vid_output
|