Nick088's picture
fix of videos, and better code by gdr/daroche
9bdccea verified
raw
history blame
8.1 kB
# import cv2
# from os.path import isfile, join
# import subprocess
# import os
# from RealESRGAN import RealESRGAN
# import torch
# import gradio as gr
# IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')
# def inference_image(image, size):
# global model2
# global model4
# global model8
# if image is None:
# raise gr.Error("Image not uploaded")
# width, height = image.size
# if width >= 5000 or height >= 5000:
# raise gr.Error("The image is too large.")
# if torch.cuda.is_available():
# torch.cuda.empty_cache()
# if size == '2x':
# try:
# result = model2.predict(image.convert('RGB'))
# except torch.cuda.OutOfMemoryError as e:
# print(e)
# model2 = RealESRGAN(device, scale=2)
# model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
# result = model2.predict(image.convert('RGB'))
# elif size == '4x':
# try:
# result = model4.predict(image.convert('RGB'))
# except torch.cuda.OutOfMemoryError as e:
# print(e)
# model4 = RealESRGAN(device, scale=4)
# model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
# result = model2.predict(image.convert('RGB'))
# else:
# try:
# result = model8.predict(image.convert('RGB'))
# except torch.cuda.OutOfMemoryError as e:
# print(e)
# model8 = RealESRGAN(device, scale=8)
# model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
# result = model2.predict(image.convert('RGB'))
# print(f"Frame of the Video size ({device}): {size} ... OK")
# return result
# # assign directory
# directory = 'videos' #PATH_WITH_INPUT_VIDEOS
# zee = 0
# def convert_frames_to_video(pathIn,pathOut,fps):
# global INPUT_DIR
# cap = cv2.VideoCapture(f'/{INPUT_DIR}/videos/input.mp4')
# fps = cap.get(cv2.CAP_PROP_FPS)
# frame_array = []
# files = [f for f in os.listdir(pathIn) if isfile(join(pathIn, f))]
# #for sorting the file names properly
# files.sort(key = lambda x: int(x[5:-4]))
# size2 = (0,0)
# for i in range(len(files)):
# filename=pathIn + files[i]
# #reading each files
# img = cv2.imread(filename)
# height, width, layers = img.shape
# size = (width,height)
# size2 = size
# print(filename)
# #inserting the frames into an image array
# frame_array.append(img)
# out = cv2.VideoWriter(pathOut,cv2.VideoWriter_fourcc(*'DIVX'), fps, size2)
# for i in range(len(frame_array)):
# # writing to a image array
# out.write(frame_array[i])
# out.release()
# for filename in os.listdir(directory):
# f = os.path.join(directory, filename)
# # checking if it is a file
# if os.path.isfile(f):
# print("PROCESSING :"+str(f)+"\n")
# # Read the video from specified path
# #video to frames
# cam = cv2.VideoCapture(str(f))
# try:
# # PATH TO STORE VIDEO FRAMES
# if not os.path.exists(f'/{INPUT_DIR}/upload/'):
# os.makedirs(f'/{INPUT_DIR}/upload/')
# # if not created then raise error
# except OSError:
# print ('Error: Creating directory of data')
# # frame
# currentframe = 0
# while(True):
# # reading from frame
# ret,frame = cam.read()
# if ret:
# # if video is still left continue creating images
# name = f'/{INPUT_DIR}/upload/frame' + str(currentframe) + '.jpg'
# # writing the extracted images
# cv2.imwrite(name, frame)
# # increasing counter so that it will
# # show how many frames are created
# currentframe += 1
# print(currentframe)
# else:
# #deletes all the videos you uploaded for upscaling
# #for f in os.listdir(video_folder):
# # os.remove(os.path.join(video_folder, f))
# break
# # Release all space and windows once done
# cam.release()
# cv2.destroyAllWindows()
# #apply super-resolution on all frames of a video
# # Specify the directory path
# all_frames_path = f"/{INPUT_DIR}/upload/"
# # Get a list of all files in the directory
# file_names = os.listdir(all_frames_path)
# # process the files
# for file_name in file_names:
# inference_image(f"/{INPUT_DIR}/upload/{file_name}")
# #convert super res frames to .avi
# pathIn = f'/{INPUT_DIR}/results/restored_imgs/'
# zee = zee+1
# fName = "video"+str(zee)
# filenameVid = f"{fName}.avi"
# pathOut = f"/{INPUT_DIR}/results_videos/"+filenameVid
# convert_frames_to_video(pathIn, pathOut, fps)
# #convert .avi to .mp4
# src = f'/{INPUT_DIR}/results_videos/'
# dst = f'/{INPUT_DIR}/results_mp4_videos/'
# for root, dirs, filenames in os.walk(src, topdown=False):
# #print(filenames)
# for filename in filenames:
# print('[INFO] 1',filename)
# try:
# _format = ''
# if ".flv" in filename.lower():
# _format=".flv"
# if ".mp4" in filename.lower():
# _format=".mp4"
# if ".avi" in filename.lower():
# _format=".avi"
# if ".mov" in filename.lower():
# _format=".mov"
# inputfile = os.path.join(root, filename)
# print('[INFO] 1',inputfile)
# outputfile = os.path.join(dst, filename.lower().replace(_format, ".mp4"))
# subprocess.call(['ffmpeg', '-i', inputfile, outputfile])
# except:
# print("An exception occurred")
from PIL import Image
import cv2 as cv
import torch
from RealESRGAN import RealESRGAN
import tempfile
import numpy as np
import tqdm
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
def infer_image(img: Image.Image, size_modifier: int ) -> Image.Image:
if img is None:
raise Exception("Image not uploaded")
width, height = img.size
if width >= 5000 or height >= 5000:
raise Exception("The image is too large.")
model = RealESRGAN(device, scale=size_modifier)
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
result = model.predict(img.convert('RGB'))
print(f"Image size ({device}): {size_modifier} ... OK")
return result
def infer_video(video_filepath: str, size_modifier: int) -> str:
model = RealESRGAN(device, scale=size_modifier)
model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False)
cap = cv.VideoCapture(video_filepath)
tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False)
vid_output = tmpfile.name
tmpfile.close()
vid_writer = cv.VideoWriter(
vid_output,
fourcc=cv.VideoWriter.fourcc(*'mp4v'),
fps=cap.get(cv.CAP_PROP_FPS),
frameSize=(int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) * size_modifier, int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) * size_modifier)
)
n_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT))
# while cap.isOpened():
for _ in tqdm.tqdm(range(n_frames)):
ret, frame = cap.read()
if not ret:
break
frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB)
frame = Image.fromarray(frame)
upscaled_frame = model.predict(frame.convert('RGB'))
upscaled_frame = np.array(upscaled_frame)
upscaled_frame = cv.cvtColor(upscaled_frame, cv.COLOR_RGB2BGR)
print(upscaled_frame.shape)
vid_writer.write(upscaled_frame)
vid_writer.release()
print(f"Video file : {video_filepath}")
return vid_output