|
import torch |
|
from PIL import Image |
|
from RealESRGAN import RealESRGAN |
|
import gradio as gr |
|
import os |
|
from random import randint |
|
import shutil |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
model2 = RealESRGAN(device, scale=2) |
|
model2.load_weights('weights/RealESRGAN_x2.pth', download=True) |
|
model4 = RealESRGAN(device, scale=4) |
|
model4.load_weights('weights/RealESRGAN_x4.pth', download=True) |
|
model8 = RealESRGAN(device, scale=8) |
|
model8.load_weights('weights/RealESRGAN_x8.pth', download=True) |
|
|
|
|
|
def inference_image(image, size): |
|
global model2 |
|
global model4 |
|
global model8 |
|
if image is None: |
|
raise gr.Error("Image not uploaded") |
|
|
|
width, height = image.size |
|
if width >= 5000 or height >= 5000: |
|
raise gr.Error("The image is too large.") |
|
|
|
if torch.cuda.is_available(): |
|
torch.cuda.empty_cache() |
|
|
|
if size == '2x': |
|
try: |
|
result = model2.predict(image.convert('RGB')) |
|
except torch.cuda.OutOfMemoryError as e: |
|
print(e) |
|
model2 = RealESRGAN(device, scale=2) |
|
model2.load_weights('weights/RealESRGAN_x2.pth', download=False) |
|
result = model2.predict(image.convert('RGB')) |
|
elif size == '4x': |
|
try: |
|
result = model4.predict(image.convert('RGB')) |
|
except torch.cuda.OutOfMemoryError as e: |
|
print(e) |
|
model4 = RealESRGAN(device, scale=4) |
|
model4.load_weights('weights/RealESRGAN_x4.pth', download=False) |
|
result = model2.predict(image.convert('RGB')) |
|
else: |
|
try: |
|
result = model8.predict(image.convert('RGB')) |
|
except torch.cuda.OutOfMemoryError as e: |
|
print(e) |
|
model8 = RealESRGAN(device, scale=8) |
|
model8.load_weights('weights/RealESRGAN_x8.pth', download=False) |
|
result = model2.predict(image.convert('RGB')) |
|
|
|
print(f"Image size ({device}): {size} ... OK") |
|
return result |
|
|
|
|
|
|
|
def inference_video(video, size): |
|
_id = randint(1, 10000) |
|
INPUT_DIR = "tmp" |
|
|
|
if os.path.exists(INPUT_DIR): |
|
shutil.rmtree(INPUT_DIR) |
|
else: |
|
|
|
os.makedirs(INPUT_DIR, exist_ok=True) |
|
os.chdir(INPUT_DIR) |
|
|
|
upload_folder = 'upload' |
|
result_folder = 'results' |
|
video_folder = 'videos' |
|
video_result_folder = 'results_videos' |
|
video_mp4_result_folder = 'results_mp4_videos' |
|
result_restored_imgs_folder = 'restored_imgs' |
|
|
|
if os.path.isdir(upload_folder): |
|
print(upload_folder+" exists") |
|
else: |
|
os.makedirs(upload_folder, exist_ok=True) |
|
|
|
if os.path.isdir(video_folder): |
|
print(video_folder+" exists") |
|
else: |
|
os.makedirs(video_folder, exist_ok=True) |
|
|
|
if os.path.isdir(video_result_folder): |
|
print(video_result_folder+" exists") |
|
else: |
|
os.makedirs(video_result_folder, exist_ok=True) |
|
|
|
if os.path.isdir(video_mp4_result_folder): |
|
print(video_mp4_result_folder+" exists") |
|
else: |
|
os.makedirs(video_mp4_result_folder, exist_ok=True) |
|
|
|
if os.path.isdir(result_folder): |
|
print(result_folder+" exists") |
|
else: |
|
os.makedirs(result_folder, exist_ok=True) |
|
|
|
os.chdir("results") |
|
if os.path.isdir(result_restored_imgs_folder): |
|
print(result_restored_imgs_folder+" exists") |
|
else: |
|
os.makedirs(result_restored_imgs_folder, exist_ok=True) |
|
os.chdir("..") |
|
|
|
if os.path.isdir(video_folder): |
|
shutil.rmtree(video_folder) |
|
os.makedirs(video_folder, exist_ok=True) |
|
os.chdir("..") |
|
try: |
|
|
|
output_file_path = f"/{INPUT_DIR}/videos/input.mp4" |
|
|
|
|
|
with open(output_file_path, 'wb') as output_file: |
|
output_file.write(video) |
|
print(f"Video input saved as {output_file_path}") |
|
except Exception as e: |
|
print(f"Error saving video input: {str(e)}") |
|
|
|
os.chdir("..") |
|
os.system("python inference_video.py") |
|
return os.path.join(f'/{INPUT_DIR}/results_mp4_videos/', 'input.mp4') |
|
|
|
|
|
|
|
input_image = gr.Image(type='pil', label='Input Image') |
|
input_model_image = gr.Radio(['2x', '4x', '8x'], type="value", value="4x", label="Model Upscale/Enhance Type") |
|
submit_image_button = gr.Button('Submit') |
|
output_image = gr.Image(type="filepath", label="Output Image") |
|
|
|
tab_img = gr.Interface( |
|
fn=inference_image, |
|
inputs=[input_image, input_model_image], |
|
outputs=output_image, |
|
title="Real-ESRGAN Pytorch", |
|
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your image, or click one of examples and choose the model. Read more at the links below. Please click submit only once <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>" |
|
) |
|
|
|
input_video = gr.Video(label='Input Video') |
|
input_model_video = gr.Radio(['2x', '4x', '8x'], type="value", value="4x", label="Model Upscale/Enhance Type") |
|
submit_video_button = gr.Button('Submit') |
|
output_video = gr.Video(label='Output Video') |
|
|
|
tab_vid = gr.Interface( |
|
fn=inference_video, |
|
inputs=[input_video, input_model_video], |
|
outputs=output_video, |
|
title="Real-ESRGAN Pytorch", |
|
description="Gradio UI for Real-ESRGAN Pytorch version. To use it, simply upload your video, or click one of examples and choose the model. Read more at the links below. Please click submit only once <br><p style='text-align: center'><a href='https://arxiv.org/abs/2107.10833'>Real-ESRGAN: Training Real-World Blind Super-Resolution with Pure Synthetic Data</a> | <a href='https://github.com/ai-forever/Real-ESRGAN'>Github Repo</a></p>" |
|
) |
|
|
|
demo = gr.TabbedInterface([tab_img, tab_vid], ["Image", "Video"]) |
|
|
|
|
|
|
|
demo.launch(debug=True, show_error=True) |