Update inference_video.py
Browse files- inference_video.py +42 -15
inference_video.py
CHANGED
@@ -3,9 +3,7 @@ import numpy as np
|
|
3 |
import glob
|
4 |
from os.path import isfile, join
|
5 |
import subprocess
|
6 |
-
from IPython.display import clear_output
|
7 |
import os
|
8 |
-
from google.colab import files
|
9 |
import shutil
|
10 |
from io import BytesIO
|
11 |
import io
|
@@ -13,18 +11,47 @@ import io
|
|
13 |
IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')
|
14 |
|
15 |
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
|
29 |
|
30 |
# assign directory
|
@@ -120,7 +147,7 @@ for filename in os.listdir(directory):
|
|
120 |
|
121 |
# process the files
|
122 |
for file_name in file_names:
|
123 |
-
|
124 |
|
125 |
|
126 |
#convert super res frames to .avi
|
|
|
3 |
import glob
|
4 |
from os.path import isfile, join
|
5 |
import subprocess
|
|
|
6 |
import os
|
|
|
7 |
import shutil
|
8 |
from io import BytesIO
|
9 |
import io
|
|
|
11 |
IMAGE_FORMATS = ('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')
|
12 |
|
13 |
|
14 |
+
def inference_image(image, size):
|
15 |
+
global model2
|
16 |
+
global model4
|
17 |
+
global model8
|
18 |
+
if image is None:
|
19 |
+
raise gr.Error("Image not uploaded")
|
20 |
+
|
21 |
+
width, height = image.size
|
22 |
+
if width >= 5000 or height >= 5000:
|
23 |
+
raise gr.Error("The image is too large.")
|
24 |
+
|
25 |
+
if torch.cuda.is_available():
|
26 |
+
torch.cuda.empty_cache()
|
27 |
+
|
28 |
+
if size == '2x':
|
29 |
+
try:
|
30 |
+
result = model2.predict(image.convert('RGB'))
|
31 |
+
except torch.cuda.OutOfMemoryError as e:
|
32 |
+
print(e)
|
33 |
+
model2 = RealESRGAN(device, scale=2)
|
34 |
+
model2.load_weights('weights/RealESRGAN_x2.pth', download=False)
|
35 |
+
result = model2.predict(image.convert('RGB'))
|
36 |
+
elif size == '4x':
|
37 |
+
try:
|
38 |
+
result = model4.predict(image.convert('RGB'))
|
39 |
+
except torch.cuda.OutOfMemoryError as e:
|
40 |
+
print(e)
|
41 |
+
model4 = RealESRGAN(device, scale=4)
|
42 |
+
model4.load_weights('weights/RealESRGAN_x4.pth', download=False)
|
43 |
+
result = model2.predict(image.convert('RGB'))
|
44 |
+
else:
|
45 |
+
try:
|
46 |
+
result = model8.predict(image.convert('RGB'))
|
47 |
+
except torch.cuda.OutOfMemoryError as e:
|
48 |
+
print(e)
|
49 |
+
model8 = RealESRGAN(device, scale=8)
|
50 |
+
model8.load_weights('weights/RealESRGAN_x8.pth', download=False)
|
51 |
+
result = model2.predict(image.convert('RGB'))
|
52 |
+
|
53 |
+
print(f"Image size ({device}): {size} ... OK")
|
54 |
+
return result
|
55 |
|
56 |
|
57 |
# assign directory
|
|
|
147 |
|
148 |
# process the files
|
149 |
for file_name in file_names:
|
150 |
+
inference_image(f"upload/{file_name}")
|
151 |
|
152 |
|
153 |
#convert super res frames to .avi
|