from PIL import Image import cv2 as cv import torch from RealESRGAN import RealESRGAN import tempfile import numpy as np import tqdm device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') def infer_image(img: Image.Image, size_modifier: int ) -> Image.Image: if img is None: raise Exception("Image not uploaded") width, height = img.size if width >= 5000 or height >= 5000: raise Exception("The image is too large.") model = RealESRGAN(device, scale=size_modifier) model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False) result = model.predict(img.convert('RGB')) print(f"Image size ({device}): {size_modifier} ... OK") return result def infer_video(video_filepath: str, size_modifier: int) -> str: model = RealESRGAN(device, scale=size_modifier) model.load_weights(f'weights/RealESRGAN_x{size_modifier}.pth', download=False) cap = cv.VideoCapture(video_filepath) tmpfile = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False) vid_output = tmpfile.name tmpfile.close() vid_writer = cv.VideoWriter( vid_output, fourcc=cv.VideoWriter.fourcc(*'mp4v'), fps=cap.get(cv.CAP_PROP_FPS), frameSize=(int(cap.get(cv.CAP_PROP_FRAME_WIDTH)) * size_modifier, int(cap.get(cv.CAP_PROP_FRAME_HEIGHT)) * size_modifier) ) n_frames = int(cap.get(cv.CAP_PROP_FRAME_COUNT)) # while cap.isOpened(): for _ in tqdm.tqdm(range(n_frames)): ret, frame = cap.read() if not ret: break frame = cv.cvtColor(frame, cv.COLOR_BGR2RGB) frame = Image.fromarray(frame) upscaled_frame = model.predict(frame.convert('RGB')) upscaled_frame = np.array(upscaled_frame) upscaled_frame = cv.cvtColor(upscaled_frame, cv.COLOR_RGB2BGR) print(upscaled_frame.shape) vid_writer.write(upscaled_frame) vid_writer.release() print(f"Video file : {video_filepath}") return vid_output