Spaces:
Sleeping
Sleeping
File size: 1,532 Bytes
a719225 c88e0f4 a719225 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 |
# Load model directly
from transformers import AutoModelForImageTextToText, TrOCRProcessor
import torch
from PIL import Image
processor = TrOCRProcessor.from_pretrained("microsoft/trocr-base-printed")
model = AutoModelForImageTextToText.from_pretrained("ChronoStellar/TrOCR_IndonesianLPR")
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model.to(device)
import gradio as gr
from PIL import Image
import torch
# Assuming model, processor, and device are already defined
def OCR(pil_image, model=model, processor=processor, device=device):
# Prepare image for the model
pixel_values = processor(pil_image, return_tensors="pt").pixel_values
# Move the input to the appropriate device (CPU/GPU)
pixel_values = pixel_values.to(device)
# Generate prediction
model.eval() # Set the model to evaluation mode
with torch.no_grad(): # Disable gradient calculation for inference
generated_ids = model.generate(pixel_values)
# Decode the predicted IDs to get the text
predicted_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
return predicted_text
# Create Gradio interface
interface = gr.Interface(
fn=OCR,
inputs=gr.Image(type="pil", label="Upload License Plate Image"),
outputs=gr.Textbox(label="Predicted License Plate"),
title="Automatic License Plate Recognition",
description="Upload an image of a license plate, and the system will predict the text on it.",
)
# Launch the Gradio app
interface.launch()
|