Ci-Dave's picture
Added files
7c2913f
import streamlit as st
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
# Import sklearn tools
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC
from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.neural_network import MLPClassifier
from sklearn.metrics import confusion_matrix, classification_report
# Set up page configuration and title
st.set_page_config(page_title="Breast Cancer Classification App", layout="wide")
st.title("Breast Cancer Classification Analysis")
# Display a header image (ensure you have this image file)
# st.image("breast_cancer_banner.jpg", caption="Breast Cancer Analysis", use_column_width=True)
# About the app
with st.expander("About this App"):
st.markdown("""
**Overview:** This application demonstrates classification of the Breast Cancer dataset using several machine learning models.
**Models included:**
- Logistic Regression
- Support Vector Machine (SVM)
- Random Forest
- Gradient Boosting
- K-Nearest Neighbors (KNN)
- MLP Neural Network
**Features:**
- Data preprocessing and scaling
- Visualization of confusion matrices, performance reports, and detailed result discussions
- Interactive model selection and performance comparison
""")
# Load the Breast Cancer dataset
data = load_breast_cancer()
df = pd.DataFrame(data.data, columns=data.feature_names)
df['target'] = data.target
# Display the raw dataset
st.subheader("Dataset Overview")
st.write(df.head())
# Split data and preprocess
X = df.drop("target", axis=1)
y = df["target"]
# Scale features
scaler = StandardScaler()
X_scaled = scaler.fit_transform(X)
# Sidebar: Allow the user to select test set size
test_size = st.sidebar.slider("Test Set Size", 0.1, 0.5, 0.2, step=0.05)
X_train, X_test, y_train, y_test = train_test_split(X_scaled, y, test_size=test_size, random_state=42)
# Dictionary of models
models = {
"Logistic Regression": LogisticRegression(max_iter=10000),
"SVM": SVC(kernel='linear'),
"Random Forest": RandomForestClassifier(n_estimators=100),
"Gradient Boosting": GradientBoostingClassifier(),
"KNN": KNeighborsClassifier(),
"MLP Neural Network": MLPClassifier(max_iter=500)
}
# Sidebar: Model selection
model_choice = st.sidebar.selectbox("Choose a model", list(models.keys()))
selected_model = models[model_choice]
# Train the selected model
with st.spinner("Training model..."):
selected_model.fit(X_train, y_train)
y_pred = selected_model.predict(X_test)
# Mapping labels for readability
label_mapping = {0: "malignant", 1: "benign"}
y_test_labels = [label_mapping[label] for label in y_test]
y_pred_labels = [label_mapping[label] for label in y_pred]
# Evaluate model performance
cm = confusion_matrix(y_test_labels, y_pred_labels, labels=["malignant", "benign"])
cr = classification_report(y_test_labels, y_pred_labels, output_dict=True)
# Display the confusion matrix with a smaller figure size
st.subheader(f"Confusion Matrix: {model_choice}")
fig, ax = plt.subplots(figsize=(4, 3)) # Further reduced size
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", ax=ax,
xticklabels=["malignant", "benign"], yticklabels=["malignant", "benign"])
ax.set_xlabel("Predicted")
ax.set_ylabel("True")
plt.tight_layout() # Adjusts the layout to fit within the figure area
st.pyplot(fig)
# Display classification report
st.subheader(f"Classification Report: {model_choice}")
cr_df = pd.DataFrame(cr).transpose()
st.dataframe(cr_df)
# Result and Discussion section
st.subheader("Result and Discussion")
if model_choice == "Logistic Regression":
st.markdown("""
**Logistic Regression Discussion:**
- **Performance:** The model shows robust performance with clear separation between classes.
- **Strengths:** It is fast, interpretable, and performs well on linearly separable data.
- **Weaknesses:** May underperform on non-linear boundaries and could be sensitive to outliers.
""")
elif model_choice == "SVM":
st.markdown("""
**SVM Discussion:**
- **Performance:** The linear SVM performs well for this dataset, handling high-dimensional data efficiently.
- **Strengths:** Effective in cases where the number of features is greater than the number of samples.
- **Weaknesses:** Tuning parameters (like the kernel) is crucial and can be computationally expensive.
""")
elif model_choice == "Random Forest":
st.markdown("""
**Random Forest Discussion:**
- **Performance:** Typically provides high accuracy and robust results due to ensemble learning.
- **Strengths:** Handles non-linearity well and provides insights via feature importance.
- **Weaknesses:** Can be less interpretable and may overfit if the trees are not properly tuned.
""")
elif model_choice == "Gradient Boosting":
st.markdown("""
**Gradient Boosting Discussion:**
- **Performance:** Demonstrates strong performance by sequentially improving on previous errors.
- **Strengths:** Excellent for handling complex data patterns.
- **Weaknesses:** Sensitive to overfitting if hyperparameters are not carefully optimized.
""")
elif model_choice == "KNN":
st.markdown("""
**KNN Discussion:**
- **Performance:** Simple yet effective for this dataset, though performance depends on the choice of 'k'.
- **Strengths:** Easy to implement and understand.
- **Weaknesses:** Computationally expensive for large datasets and sensitive to feature scaling.
""")
elif model_choice == "MLP Neural Network":
st.markdown("""
**MLP Neural Network Discussion:**
- **Performance:** Provides competitive accuracy with a flexible model that can capture non-linear relationships.
- **Strengths:** Can learn complex patterns with enough training data.
- **Weaknesses:** Requires careful tuning of hyperparameters and more computational resources compared to simpler models.
""")
else:
st.markdown("No discussion available for the selected model.")
# Optionally, provide a download button for the classification report
st.download_button("Download Classification Report as CSV", cr_df.to_csv().encode('utf-8'), "classification_report.csv", "text/csv")