3v324v23 commited on
Commit
144b594
·
1 Parent(s): d6f8d07

updated the csv

Browse files
Files changed (1) hide show
  1. pages/Model_Evaluation.py +13 -15
pages/Model_Evaluation.py CHANGED
@@ -16,7 +16,9 @@ import streamlit as st
16
  import matplotlib.pyplot as plt
17
  from fpdf import FPDF
18
  from datasets import load_dataset
19
- from huggingface_hub import hf_hub_download # ✅ NEW
 
 
20
 
21
  # ---- Streamlit State Initialization ----
22
  if 'stop_eval' not in st.session_state:
@@ -69,23 +71,27 @@ class DDRDataset(Dataset):
69
  return len(self.image_paths)
70
 
71
  def __getitem__(self, idx):
72
- img_path = self.image_paths[idx]
73
  label = int(self.labels[idx])
74
 
75
- image = cv2.imread(img_path)
76
- image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
 
 
77
 
 
78
  image = apply_median_filter(image)
79
  image = apply_clahe(image)
80
  image = apply_gamma_correction(image)
81
  image = apply_gaussian_filter(image)
82
 
83
- image = Image.fromarray(image)
 
84
  if self.transform:
85
  image = self.transform(image)
86
 
87
  return image, torch.tensor(label, dtype=torch.long)
88
-
89
  # ---- Image Transforms ----
90
  val_transform = transforms.Compose([
91
  transforms.Resize((224, 224)),
@@ -98,20 +104,12 @@ val_transform = transforms.Compose([
98
  def load_test_data_from_huggingface():
99
  dataset = load_dataset(
100
  "Ci-Dave/DDR_dataset_train_test",
101
- data_files={"test": "splits/test_labels.csv"},
102
  split="test"
103
  )
104
  df = dataset.to_pandas()
105
-
106
- # 🔍 Check actual column names if needed:
107
- # st.write(df.columns)
108
-
109
- # 🔧 Use correct column name for image paths
110
- df["new_path"] = "test/" + df["id_code"].astype(str)
111
-
112
  csv_path = "test_labels_temp.csv"
113
  df.to_csv(csv_path, index=False)
114
-
115
  dataset = DDRDataset(csv_path=csv_path, transform=val_transform)
116
  return DataLoader(dataset, batch_size=32, shuffle=False)
117
 
 
16
  import matplotlib.pyplot as plt
17
  from fpdf import FPDF
18
  from datasets import load_dataset
19
+ from huggingface_hub import hf_hub_download
20
+ import requests
21
+ from io import BytesIO
22
 
23
  # ---- Streamlit State Initialization ----
24
  if 'stop_eval' not in st.session_state:
 
71
  return len(self.image_paths)
72
 
73
  def __getitem__(self, idx):
74
+ img_url = self.image_paths[idx]
75
  label = int(self.labels[idx])
76
 
77
+ # Load image from URL
78
+ response = requests.get(img_url)
79
+ image = Image.open(BytesIO(response.content)).convert('RGB')
80
+ image = np.array(image) # Convert PIL image to NumPy array for OpenCV functions
81
 
82
+ # Apply OpenCV preprocessing
83
  image = apply_median_filter(image)
84
  image = apply_clahe(image)
85
  image = apply_gamma_correction(image)
86
  image = apply_gaussian_filter(image)
87
 
88
+ image = Image.fromarray(image) # Back to PIL for transforms
89
+
90
  if self.transform:
91
  image = self.transform(image)
92
 
93
  return image, torch.tensor(label, dtype=torch.long)
94
+
95
  # ---- Image Transforms ----
96
  val_transform = transforms.Compose([
97
  transforms.Resize((224, 224)),
 
104
  def load_test_data_from_huggingface():
105
  dataset = load_dataset(
106
  "Ci-Dave/DDR_dataset_train_test",
107
+ data_files={"test": "splits/test_labels_updated.csv"},
108
  split="test"
109
  )
110
  df = dataset.to_pandas()
 
 
 
 
 
 
 
111
  csv_path = "test_labels_temp.csv"
112
  df.to_csv(csv_path, index=False)
 
113
  dataset = DDRDataset(csv_path=csv_path, transform=val_transform)
114
  return DataLoader(dataset, batch_size=32, shuffle=False)
115