Spaces:
Sleeping
Sleeping
REvert "Add Model Evaluation Notebook"
Browse files- pages/Model_Evaluation.py +42 -78
pages/Model_Evaluation.py
CHANGED
@@ -15,16 +15,14 @@ from sklearn.preprocessing import label_binarize
|
|
15 |
import streamlit as st
|
16 |
import matplotlib.pyplot as plt
|
17 |
from fpdf import FPDF
|
18 |
-
from datasets import load_dataset
|
19 |
-
from huggingface_hub import hf_hub_download
|
20 |
-
import requests
|
21 |
-
from io import BytesIO
|
22 |
|
23 |
# ---- Streamlit State Initialization ----
|
24 |
if 'stop_eval' not in st.session_state:
|
25 |
st.session_state.stop_eval = False
|
|
|
26 |
if 'evaluation_done' not in st.session_state:
|
27 |
st.session_state.evaluation_done = False
|
|
|
28 |
if 'trigger_eval' not in st.session_state:
|
29 |
st.session_state.trigger_eval = False
|
30 |
|
@@ -35,7 +33,7 @@ st.markdown("<h2 style='color: #2E86C1;'>📈 Model Evaluation</h2>", unsafe_all
|
|
35 |
class_names = ['No_DR', 'Mild', 'Moderate', 'Severe', 'Proliferative_DR']
|
36 |
label_map = {label: idx for idx, label in enumerate(class_names)}
|
37 |
|
38 |
-
# ---- Text Cleaning Function ----
|
39 |
def clean_text(text):
|
40 |
return text.encode('utf-8', 'ignore').decode('utf-8')
|
41 |
|
@@ -60,104 +58,70 @@ def apply_gaussian_filter(image, kernel_size=(5, 5), sigma=1.0):
|
|
60 |
return cv2.GaussianBlur(image, kernel_size, sigma)
|
61 |
|
62 |
# ---- Custom Dataset ----
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
image =
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
return image, torch.tensor(label, dtype=torch.long)
|
94 |
-
|
95 |
# ---- Image Transforms ----
|
96 |
val_transform = transforms.Compose([
|
97 |
transforms.Resize((224, 224)),
|
98 |
transforms.ToTensor(),
|
99 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
100 |
])
|
101 |
-
|
102 |
-
# ----
|
103 |
-
class DDRDataset(Dataset):
|
104 |
-
def __init__(self, csv_path, transform=None):
|
105 |
-
self.data = pd.read_csv(csv_path)
|
106 |
-
self.image_paths = self.data['new_path']
|
107 |
-
self.labels = self.data['label']
|
108 |
-
self.transform = transform
|
109 |
-
|
110 |
-
def __len__(self):
|
111 |
-
return len(self.data)
|
112 |
-
|
113 |
-
def __getitem__(self, idx):
|
114 |
-
img_path = self.image_paths[idx]
|
115 |
-
label = self.labels[idx]
|
116 |
-
|
117 |
-
try:
|
118 |
-
image = Image.open(img_path).convert("RGB")
|
119 |
-
except Exception as e:
|
120 |
-
raise RuntimeError(f"Error loading image from {img_path}: {e}")
|
121 |
-
|
122 |
-
if self.transform:
|
123 |
-
image = self.transform(image)
|
124 |
-
|
125 |
-
return image, torch.tensor(label, dtype=torch.long)
|
126 |
-
|
127 |
-
# ---- Load Data from Hugging Face (cached) ----
|
128 |
@st.cache_resource
|
129 |
-
def
|
130 |
-
dataset = load_dataset(
|
131 |
-
"Ci-Dave/DDR_dataset_train_test",
|
132 |
-
data_files={"test": "splits/test_labels_newpath.csv"},
|
133 |
-
split="test"
|
134 |
-
)
|
135 |
-
df = dataset.to_pandas()
|
136 |
-
csv_path = "test_labels_temp.csv"
|
137 |
-
df.to_csv(csv_path, index=False)
|
138 |
dataset = DDRDataset(csv_path=csv_path, transform=val_transform)
|
139 |
return DataLoader(dataset, batch_size=32, shuffle=False)
|
140 |
|
141 |
-
# ---- Load Model
|
142 |
@st.cache_resource
|
143 |
def load_model():
|
144 |
-
model_path = hf_hub_download(repo_id="Ci-Dave/Densenet121", filename="Pretrained_Densenet-121.pth")
|
145 |
model = models.densenet121(pretrained=False)
|
146 |
model.classifier = nn.Linear(model.classifier.in_features, len(class_names))
|
147 |
-
model.load_state_dict(torch.load(
|
148 |
model.eval()
|
149 |
return model
|
150 |
|
151 |
-
# ---- UI Buttons ----
|
|
|
152 |
model = load_model()
|
153 |
-
test_loader =
|
154 |
|
155 |
col1, col2 = st.columns([1, 1])
|
|
|
156 |
with col1:
|
157 |
if st.button("🚀 Start Evaluation"):
|
158 |
st.session_state.stop_eval = False
|
159 |
st.session_state.evaluation_done = False
|
160 |
st.session_state.trigger_eval = True
|
|
|
161 |
with col2:
|
162 |
if st.button("🚩 Stop Evaluation"):
|
163 |
st.session_state.stop_eval = True
|
|
|
15 |
import streamlit as st
|
16 |
import matplotlib.pyplot as plt
|
17 |
from fpdf import FPDF
|
|
|
|
|
|
|
|
|
18 |
|
19 |
# ---- Streamlit State Initialization ----
|
20 |
if 'stop_eval' not in st.session_state:
|
21 |
st.session_state.stop_eval = False
|
22 |
+
|
23 |
if 'evaluation_done' not in st.session_state:
|
24 |
st.session_state.evaluation_done = False
|
25 |
+
|
26 |
if 'trigger_eval' not in st.session_state:
|
27 |
st.session_state.trigger_eval = False
|
28 |
|
|
|
33 |
class_names = ['No_DR', 'Mild', 'Moderate', 'Severe', 'Proliferative_DR']
|
34 |
label_map = {label: idx for idx, label in enumerate(class_names)}
|
35 |
|
36 |
+
# ---- Text Cleaning Function for PDF ----
|
37 |
def clean_text(text):
|
38 |
return text.encode('utf-8', 'ignore').decode('utf-8')
|
39 |
|
|
|
58 |
return cv2.GaussianBlur(image, kernel_size, sigma)
|
59 |
|
60 |
# ---- Custom Dataset ----
|
61 |
+
class DDRDataset(Dataset):
|
62 |
+
def __init__(self, csv_path, transform=None):
|
63 |
+
self.data = pd.read_csv(csv_path)
|
64 |
+
self.image_paths = self.data['new_path'].tolist()
|
65 |
+
self.labels = self.data['label'].tolist()
|
66 |
+
self.transform = transform
|
67 |
+
|
68 |
+
def __len__(self):
|
69 |
+
return len(self.image_paths)
|
70 |
+
|
71 |
+
def __getitem__(self, idx):
|
72 |
+
img_path = self.image_paths[idx]
|
73 |
+
label = int(self.labels[idx])
|
74 |
+
|
75 |
+
image = cv2.imread(img_path)
|
76 |
+
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
77 |
+
|
78 |
+
# Apply preprocessing
|
79 |
+
image = apply_median_filter(image)
|
80 |
+
image = apply_clahe(image)
|
81 |
+
image = apply_gamma_correction(image)
|
82 |
+
image = apply_gaussian_filter(image)
|
83 |
+
|
84 |
+
image = Image.fromarray(image)
|
85 |
+
if self.transform:
|
86 |
+
image = self.transform(image)
|
87 |
+
|
88 |
+
return image, torch.tensor(label, dtype=torch.long)
|
89 |
+
|
|
|
|
|
|
|
90 |
# ---- Image Transforms ----
|
91 |
val_transform = transforms.Compose([
|
92 |
transforms.Resize((224, 224)),
|
93 |
transforms.ToTensor(),
|
94 |
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
|
95 |
])
|
96 |
+
|
97 |
+
# ---- Load Data (with caching) ----
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
98 |
@st.cache_resource
|
99 |
+
def load_test_data(csv_path):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
100 |
dataset = DDRDataset(csv_path=csv_path, transform=val_transform)
|
101 |
return DataLoader(dataset, batch_size=32, shuffle=False)
|
102 |
|
103 |
+
# ---- Load Model (with caching) ----
|
104 |
@st.cache_resource
|
105 |
def load_model():
|
|
|
106 |
model = models.densenet121(pretrained=False)
|
107 |
model.classifier = nn.Linear(model.classifier.in_features, len(class_names))
|
108 |
+
model.load_state_dict(torch.load(r"D:\\DR_Classification\\training\\Pretrained_Densenet-121.pth", map_location=torch.device('cpu')))
|
109 |
model.eval()
|
110 |
return model
|
111 |
|
112 |
+
# ---- Main UI Buttons ----
|
113 |
+
csv_path = r"D:\\DR_Classification\\splits\\test_labels.csv"
|
114 |
model = load_model()
|
115 |
+
test_loader = load_test_data(csv_path)
|
116 |
|
117 |
col1, col2 = st.columns([1, 1])
|
118 |
+
|
119 |
with col1:
|
120 |
if st.button("🚀 Start Evaluation"):
|
121 |
st.session_state.stop_eval = False
|
122 |
st.session_state.evaluation_done = False
|
123 |
st.session_state.trigger_eval = True
|
124 |
+
|
125 |
with col2:
|
126 |
if st.button("🚩 Stop Evaluation"):
|
127 |
st.session_state.stop_eval = True
|