Spaces:
Sleeping
Sleeping
Added Homepage
Browse files- app.py → HomePage.py +0 -0
- pages/Dataset.py +111 -41
app.py → HomePage.py
RENAMED
File without changes
|
pages/Dataset.py
CHANGED
@@ -2,61 +2,131 @@ import streamlit as st
|
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
from PIL import Image
|
|
|
|
|
5 |
|
6 |
st.set_page_config(layout="wide")
|
7 |
-
st.title("
|
8 |
|
9 |
-
#
|
10 |
-
st.
|
11 |
-
### 🧾 Dataset Overview
|
12 |
|
13 |
-
|
|
|
|
|
|
|
|
|
|
|
14 |
|
15 |
-
|
16 |
|
17 |
-
|
18 |
-
- **Mild**
|
19 |
-
- **Moderate**
|
20 |
-
- **Severe**
|
21 |
-
- **Proliferative_DR**
|
22 |
-
""")
|
23 |
|
24 |
-
|
25 |
-
|
26 |
-
|
|
|
|
|
27 |
|
28 |
-
|
|
|
29 |
|
30 |
-
|
31 |
-
- **Validation Set** *(optional)*: Used to fine-tune hyperparameters.
|
32 |
-
- **Testing Set**: Used for final model evaluation.
|
33 |
|
34 |
-
|
35 |
-
- **80
|
36 |
-
|
37 |
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
#
|
42 |
-
|
43 |
|
44 |
-
|
45 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
46 |
|
47 |
-
|
48 |
-
|
49 |
-
|
|
|
50 |
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
|
56 |
-
|
57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
58 |
if os.path.exists(img_path):
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2 |
import pandas as pd
|
3 |
import os
|
4 |
from PIL import Image
|
5 |
+
import matplotlib.pyplot as plt
|
6 |
+
import seaborn as sns
|
7 |
|
8 |
st.set_page_config(layout="wide")
|
9 |
+
st.title("🩺 Diabetic Retinopathy Project")
|
10 |
|
11 |
+
# Tabs
|
12 |
+
tab1, tab2, tab3 = st.tabs(["📂 Dataset Info", "📊 Training Visualization", "🤖 Algorithm Used"])
|
|
|
13 |
|
14 |
+
# =============================
|
15 |
+
# Tab 1: Dataset Information
|
16 |
+
# =============================
|
17 |
+
with tab1:
|
18 |
+
st.markdown("""
|
19 |
+
### 🧾 Dataset Overview
|
20 |
|
21 |
+
**Dataset Description:**
|
22 |
|
23 |
+
The DDR dataset contains **13,673 fundus images** from **147 hospitals** across **23 provinces in China**. The images are labeled into 5 classes based on DR severity:
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
- **No_DR**
|
26 |
+
- **Mild**
|
27 |
+
- **Moderate**
|
28 |
+
- **Severe**
|
29 |
+
- **Proliferative_DR**
|
30 |
|
31 |
+
Poor-quality images were removed, and black backgrounds were deleted.
|
32 |
+
[📎 Dataset source](https://www.kaggle.com/datasets/mariaherrerot/ddrdataset)
|
33 |
|
34 |
+
### 🧪 Data Preparation & Splitting
|
|
|
|
|
35 |
|
36 |
+
- All images resized to **224x224**
|
37 |
+
- **80% Training**, **20% Testing** (stratified by class)
|
38 |
+
""")
|
39 |
|
40 |
+
# =============================
|
41 |
+
# Tab 2: Training Visualization
|
42 |
+
# =============================
|
43 |
+
with tab2:
|
44 |
+
st.markdown("### 📊 Training Data Class Distribution")
|
45 |
+
|
46 |
+
# CSV path and image folder path (adjust as needed)
|
47 |
+
CSV_PATH = r"D:\\DR_Classification\\dataset\\DR_grading.csv"
|
48 |
+
IMG_FOLDER = r"D:\\DR_Classification\\dataset\\images" # Folder where all images are stored
|
49 |
|
50 |
+
# Load CSV
|
51 |
+
df = pd.read_csv(CSV_PATH)
|
52 |
|
53 |
+
# Map the 'diagnosis' column to 'label' if it's numeric (e.g., 0 to 4)
|
54 |
+
label_map = {
|
55 |
+
0: "No_DR",
|
56 |
+
1: "Mild",
|
57 |
+
2: "Moderate",
|
58 |
+
3: "Severe",
|
59 |
+
4: "Proliferative_DR"
|
60 |
+
}
|
61 |
+
df['label'] = df['diagnosis'].map(label_map)
|
62 |
|
63 |
+
# --- Metric 1: Class Distribution ---
|
64 |
+
st.subheader("1️⃣ Class Distribution")
|
65 |
+
class_counts = df['label'].value_counts().reset_index()
|
66 |
+
class_counts.columns = ['Class', 'Count']
|
67 |
|
68 |
+
fig1, ax1 = plt.subplots()
|
69 |
+
sns.barplot(data=class_counts, x='Class', y='Count', palette='rocket', ax=ax1)
|
70 |
+
ax1.set_title("Class Distribution")
|
71 |
+
st.pyplot(fig1)
|
72 |
|
73 |
+
# --- Metric 2: Sample Images Per Class ---
|
74 |
+
st.subheader("2️⃣ Sample Images Per Class")
|
75 |
+
|
76 |
+
cols = st.columns(len(class_counts))
|
77 |
+
for i, label in enumerate(class_counts['Class']):
|
78 |
+
sample_row = df[df['label'] == label].iloc[0] # Get first image of this class
|
79 |
+
img_path = os.path.join(IMG_FOLDER, sample_row['id_code']) # Assuming image filenames are id_code.png
|
80 |
+
if os.path.exists(img_path):
|
81 |
+
image = Image.open(img_path)
|
82 |
+
cols[i].image(image, caption=label, use_container_width=True)
|
83 |
+
else:
|
84 |
+
cols[i].write(f"Image not found: {sample_row['id_code']}")
|
85 |
+
|
86 |
+
# --- Metric 3: Image Size Distribution ---
|
87 |
+
st.subheader("3️⃣ Image Size Distribution")
|
88 |
+
|
89 |
+
image_sizes = []
|
90 |
+
|
91 |
+
# Check a few images per class for speed
|
92 |
+
for label in class_counts['Class']:
|
93 |
+
sample_paths = df[df['label'] == label]['id_code'][:5] # 5 images per class
|
94 |
+
for img_code in sample_paths:
|
95 |
+
img_path = os.path.join(IMG_FOLDER, str(img_code)) # Assuming image filenames are id_code.png
|
96 |
if os.path.exists(img_path):
|
97 |
+
try:
|
98 |
+
with Image.open(img_path) as img:
|
99 |
+
image_sizes.append(img.size)
|
100 |
+
except Exception as e:
|
101 |
+
st.warning(f"Error loading image {img_code}: {e}")
|
102 |
+
pass
|
103 |
+
|
104 |
+
if image_sizes:
|
105 |
+
widths, heights = zip(*image_sizes)
|
106 |
+
fig2, ax2 = plt.subplots()
|
107 |
+
sns.histplot(widths, kde=True, label="Width", color="blue")
|
108 |
+
sns.histplot(heights, kde=True, label="Height", color="green")
|
109 |
+
ax2.legend()
|
110 |
+
ax2.set_title("Image Size Distribution")
|
111 |
+
st.pyplot(fig2)
|
112 |
+
else:
|
113 |
+
st.info("No image size data available. Check your paths.")
|
114 |
+
|
115 |
+
# =============================
|
116 |
+
# Tab 3: Algorithm Used
|
117 |
+
# =============================
|
118 |
+
with tab3:
|
119 |
+
st.markdown("""
|
120 |
+
### 🤖 Model and Algorithm
|
121 |
+
|
122 |
+
We used **Transfer Learning** with **ResNet50** for DR classification.
|
123 |
+
|
124 |
+
#### 🏗️ Model Details:
|
125 |
+
- Input Image Size: **224x224**
|
126 |
+
- Pretrained on **ImageNet**
|
127 |
+
- Optimizer: **Adam**
|
128 |
+
- Loss Function: **Categorical Crossentropy**
|
129 |
+
- Evaluation Metrics: **Accuracy**, **Precision**, **Recall**
|
130 |
+
|
131 |
+
This architecture is ideal for medical image analysis due to its deep layers and robustness to overfitting.
|
132 |
+
""")
|