Spaces:
Sleeping
Sleeping
Merge branch 'main' of https://huggingface.co/spaces/Ci-Dave/DR_Classification
Browse files
{training → Model}/Pretrained_Densenet-121.pth
RENAMED
File without changes
|
pages/Model_Evaluation.py
CHANGED
@@ -105,12 +105,12 @@ def load_test_data(csv_path):
|
|
105 |
def load_model():
|
106 |
model = models.densenet121(pretrained=False)
|
107 |
model.classifier = nn.Linear(model.classifier.in_features, len(class_names))
|
108 |
-
model.load_state_dict(torch.load(r"
|
109 |
model.eval()
|
110 |
return model
|
111 |
|
112 |
# ---- Main UI Buttons ----
|
113 |
-
csv_path = r"splits\test_labels.csv"
|
114 |
model = load_model()
|
115 |
test_loader = load_test_data(csv_path)
|
116 |
|
|
|
105 |
def load_model():
|
106 |
model = models.densenet121(pretrained=False)
|
107 |
model.classifier = nn.Linear(model.classifier.in_features, len(class_names))
|
108 |
+
model.load_state_dict(torch.load(r"D:\DR_Classification\Model\Pretrained_Densenet-121.pth", map_location=torch.device('cpu')))
|
109 |
model.eval()
|
110 |
return model
|
111 |
|
112 |
# ---- Main UI Buttons ----
|
113 |
+
csv_path = r"D:\DR_Classification\dataset\Splitted_data\splits\test_labels.csv"
|
114 |
model = load_model()
|
115 |
test_loader = load_test_data(csv_path)
|
116 |
|
pages/Upload_and_Predict.py
CHANGED
@@ -57,7 +57,7 @@ class_names = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR']
|
|
57 |
|
58 |
# Load sample images from CSV with proper label mapping
|
59 |
@st.cache_data
|
60 |
-
def load_sample_images_from_csv(csv_path=r'D:\DR_Classification\splits\test_labels.csv'):
|
61 |
df = pd.read_csv(csv_path)
|
62 |
samples = defaultdict(list)
|
63 |
|
@@ -76,7 +76,7 @@ def load_sample_images_from_csv(csv_path=r'D:\DR_Classification\splits\test_labe
|
|
76 |
def load_model():
|
77 |
model = models.densenet121(pretrained=False)
|
78 |
model.classifier = torch.nn.Linear(model.classifier.in_features, len(class_names))
|
79 |
-
model.load_state_dict(torch.load("
|
80 |
model.eval()
|
81 |
return model
|
82 |
|
|
|
57 |
|
58 |
# Load sample images from CSV with proper label mapping
|
59 |
@st.cache_data
|
60 |
+
def load_sample_images_from_csv(csv_path=r'D:\DR_Classification\dataset\Splitted_data\splits\test_labels.csv'):
|
61 |
df = pd.read_csv(csv_path)
|
62 |
samples = defaultdict(list)
|
63 |
|
|
|
76 |
def load_model():
|
77 |
model = models.densenet121(pretrained=False)
|
78 |
model.classifier = torch.nn.Linear(model.classifier.in_features, len(class_names))
|
79 |
+
model.load_state_dict(torch.load("Model/Pretrained_Densenet-121.pth", map_location='cpu'))
|
80 |
model.eval()
|
81 |
return model
|
82 |
|
training/training.ipynb
CHANGED
@@ -16,7 +16,7 @@
|
|
16 |
"source": [
|
17 |
"### STEPS for model training\n",
|
18 |
"##### Step 1. Define Preprocessing Function \n",
|
19 |
-
"###### Median Filtering, CLAHE, Gamma Correction
|
20 |
"##### Step 2. Create Custom Dataset for preprocessing (Pytorch doesn't supports Custom Preprocessing)\n",
|
21 |
"##### Step 3. Define Transform (with data augmentation)\n",
|
22 |
"##### Step 4. Create datasets and Dataloaders\n",
|
@@ -48,26 +48,57 @@
|
|
48 |
},
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
-
"execution_count":
|
52 |
"id": "80aeae51",
|
53 |
"metadata": {},
|
54 |
"outputs": [],
|
55 |
"source": [
|
|
|
|
|
|
|
56 |
"import os\n",
|
|
|
|
|
57 |
"import cv2\n",
|
|
|
|
|
58 |
"import numpy as np\n",
|
|
|
|
|
59 |
"import pandas as pd\n",
|
|
|
|
|
60 |
"from PIL import Image\n",
|
|
|
|
|
61 |
"from matplotlib import pyplot as plt\n",
|
|
|
|
|
62 |
"from sklearn.model_selection import train_test_split\n",
|
|
|
|
|
63 |
"import shutil \n",
|
|
|
|
|
64 |
"import torch\n",
|
|
|
|
|
65 |
"import torch.nn as nn\n",
|
|
|
|
|
66 |
"from tqdm import tqdm\n",
|
|
|
|
|
67 |
"import torch.optim as optim\n",
|
|
|
|
|
68 |
"from torch.optim.lr_scheduler import StepLR\n",
|
|
|
|
|
69 |
"from torch.utils.data import Dataset, DataLoader\n",
|
70 |
-
"
|
|
|
|
|
71 |
]
|
72 |
},
|
73 |
{
|
@@ -80,7 +111,7 @@
|
|
80 |
},
|
81 |
{
|
82 |
"cell_type": "code",
|
83 |
-
"execution_count":
|
84 |
"id": "99b3890e",
|
85 |
"metadata": {},
|
86 |
"outputs": [
|
@@ -96,55 +127,71 @@
|
|
96 |
],
|
97 |
"source": [
|
98 |
"# Load CSV\n",
|
99 |
-
"
|
100 |
-
"df
|
|
|
|
|
|
|
|
|
|
|
101 |
"df['label'] = df['diagnosis']\n",
|
102 |
"\n",
|
103 |
-
"# Create output directories\n",
|
104 |
-
"output_root = \"D:\\\\DR_Classification\\\\splits\"\n",
|
105 |
-
"os.makedirs(os.path.join(output_root, \"train\"), exist_ok=True)\n",
|
106 |
-
"os.makedirs(os.path.join(output_root, \"test\"), exist_ok=True)\n",
|
107 |
"\n",
|
108 |
-
"# Split
|
|
|
|
|
|
|
109 |
"train_df, test_df = train_test_split(df, test_size=0.3, stratify=df['label'], random_state=42)\n",
|
110 |
"\n",
|
111 |
-
"#
|
112 |
"def save_split(df_split, split_name):\n",
|
|
|
113 |
" split_folder = os.path.join(output_root, split_name)\n",
|
114 |
" new_paths = []\n",
|
115 |
"\n",
|
116 |
-
" #
|
117 |
" csv_path = os.path.join(output_root, f\"{split_name}_labels.csv\")\n",
|
|
|
|
|
118 |
" if os.path.exists(csv_path):\n",
|
119 |
" print(f\"{split_name}_labels.csv already exists. Skipping this split.\")\n",
|
120 |
-
" return
|
121 |
"\n",
|
122 |
-
" #
|
123 |
" for _, row in df_split.iterrows():\n",
|
124 |
-
" src = row['image_path']\n",
|
125 |
-
" dst = os.path.join(split_folder, os.path.basename(src))\n",
|
126 |
"\n",
|
|
|
127 |
" if os.path.exists(src):\n",
|
128 |
" shutil.copy(src, dst)\n",
|
129 |
-
" new_paths.append(dst)\n",
|
130 |
" else:\n",
|
131 |
-
" print(f\"Warning: Missing image file {src}\")\n",
|
132 |
"\n",
|
|
|
133 |
" df_split = df_split.copy()\n",
|
134 |
" df_split['new_path'] = new_paths\n",
|
|
|
|
|
135 |
" df_split[['id_code', 'label', 'new_path']].to_csv(csv_path, index=False)\n",
|
136 |
" print(f\"{split_name}_labels.csv saved successfully!\")\n",
|
137 |
"\n",
|
138 |
-
"# Save
|
139 |
"save_split(train_df, \"train\")\n",
|
140 |
"save_split(test_df, \"test\")\n",
|
141 |
"\n",
|
|
|
142 |
"print(\"Splits and CSVs checked and saved successfully!\")"
|
143 |
]
|
144 |
},
|
145 |
{
|
146 |
"cell_type": "code",
|
147 |
-
"execution_count":
|
148 |
"id": "d6bda349",
|
149 |
"metadata": {},
|
150 |
"outputs": [
|
@@ -162,7 +209,7 @@
|
|
162 |
}
|
163 |
],
|
164 |
"source": [
|
165 |
-
"print(df['image_path'].head())"
|
166 |
]
|
167 |
},
|
168 |
{
|
@@ -214,21 +261,21 @@
|
|
214 |
},
|
215 |
{
|
216 |
"cell_type": "code",
|
217 |
-
"execution_count":
|
218 |
"id": "3264f03c",
|
219 |
"metadata": {},
|
220 |
"outputs": [],
|
221 |
"source": [
|
222 |
"# Load the split CSVs\n",
|
223 |
-
"train_df = pd.read_csv(\"D:/DR_Classification/splits/train_labels.csv\")\n",
|
224 |
-
"test_df = pd.read_csv(\"D:/DR_Classification/splits/test_labels.csv\")\n",
|
225 |
"\n",
|
226 |
"# Extract paths and labels\n",
|
227 |
"train_paths = train_df['new_path'].tolist()\n",
|
228 |
"train_labels = train_df['label'].tolist()\n",
|
229 |
"\n",
|
230 |
-
"test_paths = test_df['new_path'].tolist()\n",
|
231 |
-
"test_labels = test_df['label'].tolist()"
|
232 |
]
|
233 |
},
|
234 |
{
|
@@ -241,28 +288,56 @@
|
|
241 |
},
|
242 |
{
|
243 |
"cell_type": "code",
|
244 |
-
"execution_count":
|
245 |
"id": "0b0e9212",
|
246 |
"metadata": {},
|
247 |
"outputs": [],
|
248 |
"source": [
|
|
|
249 |
"def apply_median_filter(image):\n",
|
|
|
250 |
" return cv2.medianBlur(image, 3)\n",
|
251 |
"\n",
|
|
|
|
|
252 |
"def apply_clahe(image):\n",
|
|
|
253 |
" lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)\n",
|
|
|
|
|
254 |
" l, a, b = cv2.split(lab)\n",
|
|
|
|
|
255 |
" clahe = cv2.createCLAHE(clipLimit=2.0)\n",
|
|
|
|
|
256 |
" cl = clahe.apply(l)\n",
|
|
|
|
|
257 |
" merged = cv2.merge((cl, a, b))\n",
|
|
|
|
|
258 |
" return cv2.cvtColor(merged, cv2.COLOR_LAB2RGB)\n",
|
259 |
"\n",
|
|
|
|
|
260 |
"def apply_gamma_correction(image, gamma=1.2):\n",
|
|
|
261 |
" invGamma = 1.0 / gamma\n",
|
|
|
|
|
|
|
262 |
" table = np.array([(i / 255.0) ** invGamma * 255 for i in np.arange(0, 256)]).astype(\"uint8\")\n",
|
|
|
|
|
263 |
" return cv2.LUT(image, table)\n",
|
264 |
"\n",
|
|
|
|
|
265 |
"def apply_gaussian_filter(image, kernel_size=(5, 5), sigma=1.0):\n",
|
|
|
|
|
|
|
266 |
" return cv2.GaussianBlur(image, kernel_size, sigma)\n"
|
267 |
]
|
268 |
},
|
@@ -753,7 +828,7 @@
|
|
753 |
},
|
754 |
{
|
755 |
"cell_type": "code",
|
756 |
-
"execution_count":
|
757 |
"id": "2090199a",
|
758 |
"metadata": {},
|
759 |
"outputs": [
|
@@ -809,8 +884,8 @@
|
|
809 |
"# 2. Load the model architecture\n",
|
810 |
"# -------------------------------\n",
|
811 |
"model = models.densenet121(pretrained=False) # Use DenseNet-121 architecture\n",
|
812 |
-
"model.classifier = nn.Linear(model.classifier.in_features, 5) # Adjust for 5 classes in DDR dataset\n",
|
813 |
-
"model.load_state_dict(torch.load(r\"D:\\DR_Classification\\
|
814 |
"\n",
|
815 |
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
816 |
"model.to(device)\n",
|
@@ -997,7 +1072,7 @@
|
|
997 |
},
|
998 |
{
|
999 |
"cell_type": "code",
|
1000 |
-
"execution_count":
|
1001 |
"id": "30d1e549",
|
1002 |
"metadata": {},
|
1003 |
"outputs": [
|
@@ -1013,39 +1088,57 @@
|
|
1013 |
}
|
1014 |
],
|
1015 |
"source": [
|
|
|
1016 |
"from collections import Counter\n",
|
1017 |
"\n",
|
|
|
1018 |
"correct_per_class = Counter()\n",
|
|
|
|
|
1019 |
"total_per_class = Counter()\n",
|
1020 |
"\n",
|
|
|
1021 |
"with torch.no_grad():\n",
|
|
|
1022 |
" for inputs, labels in test_loader:\n",
|
|
|
1023 |
" inputs = inputs.to(device)\n",
|
1024 |
" labels = labels.to(device)\n",
|
|
|
|
|
1025 |
" outputs = model(inputs)\n",
|
|
|
|
|
1026 |
" _, predicted = torch.max(outputs, 1)\n",
|
1027 |
"\n",
|
|
|
1028 |
" for label, prediction in zip(labels, predicted):\n",
|
1029 |
-
" total_per_class[label.item()] += 1\n",
|
1030 |
" if label == prediction:\n",
|
1031 |
-
" correct_per_class[label.item()] += 1\n",
|
1032 |
"\n",
|
1033 |
-
"
|
|
|
|
|
|
|
|
|
|
|
1034 |
"\n",
|
1035 |
-
"#
|
1036 |
"plt.figure(figsize=(8, 5))\n",
|
1037 |
-
"plt.bar(class_acc.keys(), class_acc.values(), color='skyblue')\n",
|
1038 |
"plt.ylabel(\"Accuracy (%)\")\n",
|
1039 |
"plt.title(\"Per-Class Accuracy\")\n",
|
1040 |
-
"plt.xticks(rotation=45)\n",
|
1041 |
-
"plt.ylim(0, 100)\n",
|
1042 |
"plt.grid(True)\n",
|
1043 |
-
"plt.show()\n"
|
|
|
1044 |
]
|
1045 |
},
|
1046 |
{
|
1047 |
"cell_type": "code",
|
1048 |
-
"execution_count":
|
1049 |
"id": "653632e3",
|
1050 |
"metadata": {},
|
1051 |
"outputs": [
|
@@ -1061,37 +1154,56 @@
|
|
1061 |
}
|
1062 |
],
|
1063 |
"source": [
|
|
|
1064 |
"def show_misclassified(model, test_loader, class_names, device='cpu', max_images=6):\n",
|
|
|
1065 |
" model.eval()\n",
|
|
|
|
|
1066 |
" misclassified = []\n",
|
1067 |
"\n",
|
|
|
1068 |
" with torch.no_grad():\n",
|
|
|
1069 |
" for inputs, labels in test_loader:\n",
|
|
|
1070 |
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
|
|
|
|
1071 |
" outputs = model(inputs)\n",
|
1072 |
" _, preds = torch.max(outputs, 1)\n",
|
1073 |
"\n",
|
|
|
1074 |
" for img, true_label, pred_label in zip(inputs, labels, preds):\n",
|
1075 |
" if true_label != pred_label:\n",
|
|
|
1076 |
" misclassified.append((img.cpu(), true_label.item(), pred_label.item()))\n",
|
|
|
|
|
1077 |
" if len(misclassified) >= max_images:\n",
|
1078 |
" break\n",
|
1079 |
" if len(misclassified) >= max_images:\n",
|
1080 |
" break\n",
|
1081 |
"\n",
|
|
|
1082 |
" plt.figure(figsize=(12, 8))\n",
|
1083 |
" for i, (img, true_label, pred_label) in enumerate(misclassified):\n",
|
1084 |
-
" plt.subplot(2, 3, i+1)\n",
|
1085 |
-
"
|
1086 |
-
"
|
1087 |
-
" img =
|
|
|
|
|
|
|
|
|
1088 |
" plt.imshow(img)\n",
|
1089 |
" plt.title(f'True: {class_names[true_label]}\\nPred: {class_names[pred_label]}')\n",
|
1090 |
-
" plt.axis('off')\n",
|
|
|
1091 |
" plt.tight_layout()\n",
|
1092 |
" plt.show()\n",
|
1093 |
"\n",
|
1094 |
-
"# Call
|
1095 |
"show_misclassified(model, test_loader, class_names, device=device)\n"
|
1096 |
]
|
1097 |
},
|
@@ -1105,7 +1217,7 @@
|
|
1105 |
},
|
1106 |
{
|
1107 |
"cell_type": "code",
|
1108 |
-
"execution_count":
|
1109 |
"id": "45a03f67",
|
1110 |
"metadata": {},
|
1111 |
"outputs": [
|
@@ -1207,47 +1319,56 @@
|
|
1207 |
}
|
1208 |
],
|
1209 |
"source": [
|
|
|
1210 |
"def visualize_predictions(model, dataloader, class_names, device='cuda', num_images=6):\n",
|
1211 |
-
" model.eval()\n",
|
1212 |
-
" images_shown = 0\n",
|
1213 |
-
" correct_preds = 0\n",
|
1214 |
"\n",
|
1215 |
-
" with torch.no_grad()
|
1216 |
" for inputs, labels in dataloader:\n",
|
1217 |
-
" inputs = inputs.to(device)\n",
|
1218 |
" labels = labels.to(device)\n",
|
1219 |
-
" outputs = model(inputs)\n",
|
1220 |
-
" _, preds = torch.max(outputs, 1)\n",
|
1221 |
"\n",
|
|
|
|
|
|
|
|
|
1222 |
" inputs = inputs.cpu()\n",
|
1223 |
" labels = labels.cpu()\n",
|
1224 |
" preds = preds.cpu()\n",
|
1225 |
"\n",
|
|
|
1226 |
" for i in range(inputs.size(0)):\n",
|
1227 |
" if images_shown >= num_images:\n",
|
|
|
1228 |
" print(f\"\\n�� Total Correct: {correct_preds}/{num_images} — Accuracy: {(correct_preds / num_images) * 100:.2f}%\")\n",
|
1229 |
" return\n",
|
1230 |
"\n",
|
1231 |
-
"
|
1232 |
-
" img =
|
|
|
1233 |
"\n",
|
|
|
1234 |
" is_correct = preds[i] == labels[i]\n",
|
1235 |
" correctness = \"✔️ Correct\" if is_correct else \"❌ Wrong\"\n",
|
1236 |
" if is_correct:\n",
|
1237 |
" correct_preds += 1\n",
|
1238 |
"\n",
|
|
|
1239 |
" plt.imshow(img)\n",
|
1240 |
" plt.title(f\"True: {class_names[labels[i]]}\\nPred: {class_names[preds[i]]} | {correctness}\")\n",
|
1241 |
" plt.axis(\"off\")\n",
|
1242 |
" plt.show()\n",
|
1243 |
"\n",
|
1244 |
-
" images_shown += 1\n",
|
1245 |
"\n",
|
|
|
1246 |
" print(f\"\\n✅ Total Correct: {correct_preds}/{num_images} — Accuracy: {(correct_preds / num_images) * 100:.2f}%\")\n",
|
1247 |
"\n",
|
1248 |
"# Example usage\n",
|
1249 |
"class_names = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR']\n",
|
1250 |
-
"visualize_predictions(model, test_loader, class_names, device=device, num_images=8)"
|
1251 |
]
|
1252 |
},
|
1253 |
{
|
@@ -1279,7 +1400,7 @@
|
|
1279 |
},
|
1280 |
{
|
1281 |
"cell_type": "code",
|
1282 |
-
"execution_count":
|
1283 |
"id": "e1133810",
|
1284 |
"metadata": {},
|
1285 |
"outputs": [
|
@@ -1347,7 +1468,7 @@
|
|
1347 |
"\n",
|
1348 |
"# Example usage:\n",
|
1349 |
"class_names = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR'] # Modify as per your dataset\n",
|
1350 |
-
"image_path = r'D:\\DR_Classification\\splits\\train\\007-0025-000.jpg' # Replace with your image path\n",
|
1351 |
"predicted_class, confidence_percentage = predict_image(model, image_path, class_names, device='cpu')\n",
|
1352 |
"\n",
|
1353 |
"print(f\"Predicted Class: {predicted_class}\")\n",
|
|
|
16 |
"source": [
|
17 |
"### STEPS for model training\n",
|
18 |
"##### Step 1. Define Preprocessing Function \n",
|
19 |
+
"###### Median Filtering, CLAHE, Gamma Correction\n",
|
20 |
"##### Step 2. Create Custom Dataset for preprocessing (Pytorch doesn't supports Custom Preprocessing)\n",
|
21 |
"##### Step 3. Define Transform (with data augmentation)\n",
|
22 |
"##### Step 4. Create datasets and Dataloaders\n",
|
|
|
48 |
},
|
49 |
{
|
50 |
"cell_type": "code",
|
51 |
+
"execution_count": null,
|
52 |
"id": "80aeae51",
|
53 |
"metadata": {},
|
54 |
"outputs": [],
|
55 |
"source": [
|
56 |
+
"# Importing necessary libraries for various operations\n",
|
57 |
+
"\n",
|
58 |
+
"# OS module helps in interacting with the operating system (file and directory handling)\n",
|
59 |
"import os\n",
|
60 |
+
"\n",
|
61 |
+
"# OpenCV library for image processing\n",
|
62 |
"import cv2\n",
|
63 |
+
"\n",
|
64 |
+
"# NumPy for numerical operations and handling arrays\n",
|
65 |
"import numpy as np\n",
|
66 |
+
"\n",
|
67 |
+
"# Pandas for working with structured data like CSV or Excel (DataFrames)\n",
|
68 |
"import pandas as pd\n",
|
69 |
+
"\n",
|
70 |
+
"# PIL (Python Imaging Library) for handling images in Python\n",
|
71 |
"from PIL import Image\n",
|
72 |
+
"\n",
|
73 |
+
"# Matplotlib for data visualization (plotting graphs and images)\n",
|
74 |
"from matplotlib import pyplot as plt\n",
|
75 |
+
"\n",
|
76 |
+
"# Function to split dataset into training and testing sets\n",
|
77 |
"from sklearn.model_selection import train_test_split\n",
|
78 |
+
"\n",
|
79 |
+
"# Shutil helps with file operations like copying and moving files\n",
|
80 |
"import shutil \n",
|
81 |
+
"\n",
|
82 |
+
"# PyTorch main library - used for building and training deep learning models\n",
|
83 |
"import torch\n",
|
84 |
+
"\n",
|
85 |
+
"# PyTorch neural network module - contains layers and loss functions\n",
|
86 |
"import torch.nn as nn\n",
|
87 |
+
"\n",
|
88 |
+
"# TQDM for showing progress bars during training or data processing loops\n",
|
89 |
"from tqdm import tqdm\n",
|
90 |
+
"\n",
|
91 |
+
"# PyTorch's optimizer module - includes optimizers like Adam, SGD, etc.\n",
|
92 |
"import torch.optim as optim\n",
|
93 |
+
"\n",
|
94 |
+
"# Learning rate scheduler - automatically adjusts the learning rate during training\n",
|
95 |
"from torch.optim.lr_scheduler import StepLR\n",
|
96 |
+
"\n",
|
97 |
+
"# Custom Dataset and DataLoader utilities for batch processing\n",
|
98 |
"from torch.utils.data import Dataset, DataLoader\n",
|
99 |
+
"\n",
|
100 |
+
"# Pre-trained models and image transformation tools from torchvision\n",
|
101 |
+
"from torchvision import models, transforms\n"
|
102 |
]
|
103 |
},
|
104 |
{
|
|
|
111 |
},
|
112 |
{
|
113 |
"cell_type": "code",
|
114 |
+
"execution_count": null,
|
115 |
"id": "99b3890e",
|
116 |
"metadata": {},
|
117 |
"outputs": [
|
|
|
127 |
],
|
128 |
"source": [
|
129 |
"# Load CSV\n",
|
130 |
+
"# Load the CSV file that contains image IDs and their corresponding labels (diagnosis)\n",
|
131 |
+
"df = pd.read_csv(\"D:\\\\DR_Classification\\\\dataset\\\\DR_grading.csv\") #change path to your csv file\n",
|
132 |
+
"\n",
|
133 |
+
"# Add a new column 'image_path' which holds the full path to each image file\n",
|
134 |
+
"df['image_path'] = df['id_code'].apply(lambda x: os.path.join(\"D:\\\\DR_Classification\\\\dataset\\\\images\", x)) #change path to your image folder\n",
|
135 |
+
"\n",
|
136 |
+
"# Rename the 'diagnosis' column to 'label' to match deep learning convention (features vs label)\n",
|
137 |
"df['label'] = df['diagnosis']\n",
|
138 |
"\n",
|
139 |
+
"# Create output directories for storing train and test images\n",
|
140 |
+
"output_root = \"D:\\\\DR_Classification\\\\dataset\\\\Splitted_data\\\\splits\" #change path to your output folder\n",
|
141 |
+
"os.makedirs(os.path.join(output_root, \"train\"), exist_ok=True) # Creates 'train' folder if not existing\n",
|
142 |
+
"os.makedirs(os.path.join(output_root, \"test\"), exist_ok=True) # Creates 'test' folder if not existing\n",
|
143 |
"\n",
|
144 |
+
"# Split the dataset into training and testing sets\n",
|
145 |
+
"# test_size=0.3 means 30% of the data will go to the test set\n",
|
146 |
+
"# stratify ensures each class is proportionally represented in both train and test\n",
|
147 |
+
"# random_state ensures reproducibility of the split\n",
|
148 |
"train_df, test_df = train_test_split(df, test_size=0.3, stratify=df['label'], random_state=42)\n",
|
149 |
"\n",
|
150 |
+
"# Define a function to copy the images to their respective folders and save split CSV files\n",
|
151 |
"def save_split(df_split, split_name):\n",
|
152 |
+
" # Define the folder where the images will be saved (either train or test)\n",
|
153 |
" split_folder = os.path.join(output_root, split_name)\n",
|
154 |
" new_paths = []\n",
|
155 |
"\n",
|
156 |
+
" # Define the path for the split's CSV file (e.g., train_labels.csv)\n",
|
157 |
" csv_path = os.path.join(output_root, f\"{split_name}_labels.csv\")\n",
|
158 |
+
" \n",
|
159 |
+
" # If the CSV already exists, skip processing to avoid duplication\n",
|
160 |
" if os.path.exists(csv_path):\n",
|
161 |
" print(f\"{split_name}_labels.csv already exists. Skipping this split.\")\n",
|
162 |
+
" return\n",
|
163 |
"\n",
|
164 |
+
" # Loop through each row in the split DataFrame\n",
|
165 |
" for _, row in df_split.iterrows():\n",
|
166 |
+
" src = row['image_path'] # original image path\n",
|
167 |
+
" dst = os.path.join(split_folder, os.path.basename(src)) # destination path in train/test folder\n",
|
168 |
"\n",
|
169 |
+
" # Copy the image if it exists\n",
|
170 |
" if os.path.exists(src):\n",
|
171 |
" shutil.copy(src, dst)\n",
|
172 |
+
" new_paths.append(dst) # store the new path for saving in CSV\n",
|
173 |
" else:\n",
|
174 |
+
" print(f\"Warning: Missing image file {src}\") # error message if file not found\n",
|
175 |
"\n",
|
176 |
+
" # Create a copy of the split DataFrame and add the new image paths\n",
|
177 |
" df_split = df_split.copy()\n",
|
178 |
" df_split['new_path'] = new_paths\n",
|
179 |
+
"\n",
|
180 |
+
" # Save relevant columns into a new CSV file (id, label, new image path)\n",
|
181 |
" df_split[['id_code', 'label', 'new_path']].to_csv(csv_path, index=False)\n",
|
182 |
" print(f\"{split_name}_labels.csv saved successfully!\")\n",
|
183 |
"\n",
|
184 |
+
"# Save the training and testing splits\n",
|
185 |
"save_split(train_df, \"train\")\n",
|
186 |
"save_split(test_df, \"test\")\n",
|
187 |
"\n",
|
188 |
+
"# Final print to confirm everything worked\n",
|
189 |
"print(\"Splits and CSVs checked and saved successfully!\")"
|
190 |
]
|
191 |
},
|
192 |
{
|
193 |
"cell_type": "code",
|
194 |
+
"execution_count": null,
|
195 |
"id": "d6bda349",
|
196 |
"metadata": {},
|
197 |
"outputs": [
|
|
|
209 |
}
|
210 |
],
|
211 |
"source": [
|
212 |
+
"print(df['image_path'].head()) # Display the first few rows of the DataFrame to verify paths"
|
213 |
]
|
214 |
},
|
215 |
{
|
|
|
261 |
},
|
262 |
{
|
263 |
"cell_type": "code",
|
264 |
+
"execution_count": null,
|
265 |
"id": "3264f03c",
|
266 |
"metadata": {},
|
267 |
"outputs": [],
|
268 |
"source": [
|
269 |
"# Load the split CSVs\n",
|
270 |
+
"train_df = pd.read_csv(\"D:/DR_Classification/dataset/Splitted_data/splits/train_labels.csv\") #change path to your csv file\n",
|
271 |
+
"test_df = pd.read_csv(\"D:/DR_Classification/dataset/Splitted_data/splits/test_labels.csv\") \n",
|
272 |
"\n",
|
273 |
"# Extract paths and labels\n",
|
274 |
"train_paths = train_df['new_path'].tolist()\n",
|
275 |
"train_labels = train_df['label'].tolist()\n",
|
276 |
"\n",
|
277 |
+
"test_paths = test_df['new_path'].tolist() \n",
|
278 |
+
"test_labels = test_df['label'].tolist() "
|
279 |
]
|
280 |
},
|
281 |
{
|
|
|
288 |
},
|
289 |
{
|
290 |
"cell_type": "code",
|
291 |
+
"execution_count": null,
|
292 |
"id": "0b0e9212",
|
293 |
"metadata": {},
|
294 |
"outputs": [],
|
295 |
"source": [
|
296 |
+
"# Applies a Median Filter to remove noise (especially salt-and-pepper noise)\n",
|
297 |
"def apply_median_filter(image):\n",
|
298 |
+
" # cv2.medianBlur applies a median filter with a 3x3 kernel\n",
|
299 |
" return cv2.medianBlur(image, 3)\n",
|
300 |
"\n",
|
301 |
+
"\n",
|
302 |
+
"# Applies CLAHE (Contrast Limited Adaptive Histogram Equalization) to enhance local contrast\n",
|
303 |
"def apply_clahe(image):\n",
|
304 |
+
" # Convert the image from RGB color space to LAB color space\n",
|
305 |
" lab = cv2.cvtColor(image, cv2.COLOR_RGB2LAB)\n",
|
306 |
+
" \n",
|
307 |
+
" # Split LAB into individual channels: L (lightness), A (green–red), B (blue–yellow)\n",
|
308 |
" l, a, b = cv2.split(lab)\n",
|
309 |
+
" \n",
|
310 |
+
" # Create a CLAHE object with clipLimit=2.0 (limits contrast amplification)\n",
|
311 |
" clahe = cv2.createCLAHE(clipLimit=2.0)\n",
|
312 |
+
" \n",
|
313 |
+
" # Apply CLAHE to the L channel (intensity)\n",
|
314 |
" cl = clahe.apply(l)\n",
|
315 |
+
" \n",
|
316 |
+
" # Merge the enhanced L channel with the original A and B channels\n",
|
317 |
" merged = cv2.merge((cl, a, b))\n",
|
318 |
+
" \n",
|
319 |
+
" # Convert the image back from LAB to RGB color space\n",
|
320 |
" return cv2.cvtColor(merged, cv2.COLOR_LAB2RGB)\n",
|
321 |
"\n",
|
322 |
+
"\n",
|
323 |
+
"# Applies Gamma Correction to adjust image brightness\n",
|
324 |
"def apply_gamma_correction(image, gamma=1.2):\n",
|
325 |
+
" # Calculate the inverse of gamma\n",
|
326 |
" invGamma = 1.0 / gamma\n",
|
327 |
+
"\n",
|
328 |
+
" # Create a lookup table for all pixel values (0–255)\n",
|
329 |
+
" # Each pixel is transformed based on gamma value\n",
|
330 |
" table = np.array([(i / 255.0) ** invGamma * 255 for i in np.arange(0, 256)]).astype(\"uint8\")\n",
|
331 |
+
" \n",
|
332 |
+
" # Apply the gamma correction using the lookup table\n",
|
333 |
" return cv2.LUT(image, table)\n",
|
334 |
"\n",
|
335 |
+
"\n",
|
336 |
+
"# Applies a Gaussian Blur to smooth the image and reduce noise/detail\n",
|
337 |
"def apply_gaussian_filter(image, kernel_size=(5, 5), sigma=1.0):\n",
|
338 |
+
" # cv2.GaussianBlur uses a Gaussian kernel to blur the image\n",
|
339 |
+
" # kernel_size defines the width and height of the filter\n",
|
340 |
+
" # sigma defines how much to blur (higher = more blur)\n",
|
341 |
" return cv2.GaussianBlur(image, kernel_size, sigma)\n"
|
342 |
]
|
343 |
},
|
|
|
828 |
},
|
829 |
{
|
830 |
"cell_type": "code",
|
831 |
+
"execution_count": null,
|
832 |
"id": "2090199a",
|
833 |
"metadata": {},
|
834 |
"outputs": [
|
|
|
884 |
"# 2. Load the model architecture\n",
|
885 |
"# -------------------------------\n",
|
886 |
"model = models.densenet121(pretrained=False) # Use DenseNet-121 architecture\n",
|
887 |
+
"model.classifier = nn.Linear(model.classifier.in_features, 5) # Adjust for 5 classes in DDR dataset \n",
|
888 |
+
"model.load_state_dict(torch.load(r\"D:\\DR_Classification\\Model\\Pretrained_Densenet-121.pth\", map_location=torch.device('cpu'))) # Load the trained model weights\n",
|
889 |
"\n",
|
890 |
"device = torch.device(\"cuda\" if torch.cuda.is_available() else \"cpu\")\n",
|
891 |
"model.to(device)\n",
|
|
|
1072 |
},
|
1073 |
{
|
1074 |
"cell_type": "code",
|
1075 |
+
"execution_count": null,
|
1076 |
"id": "30d1e549",
|
1077 |
"metadata": {},
|
1078 |
"outputs": [
|
|
|
1088 |
}
|
1089 |
],
|
1090 |
"source": [
|
1091 |
+
"# Import Counter from collections to count occurrences per class\n",
|
1092 |
"from collections import Counter\n",
|
1093 |
"\n",
|
1094 |
+
"# Dictionary to track how many predictions were correct per class\n",
|
1095 |
"correct_per_class = Counter()\n",
|
1096 |
+
"\n",
|
1097 |
+
"# Dictionary to track total number of samples per class\n",
|
1098 |
"total_per_class = Counter()\n",
|
1099 |
"\n",
|
1100 |
+
"# Disable gradient calculation for inference (saves memory and computation)\n",
|
1101 |
"with torch.no_grad():\n",
|
1102 |
+
" # Loop over the test dataset\n",
|
1103 |
" for inputs, labels in test_loader:\n",
|
1104 |
+
" # Move input tensors to the same device as the model (CPU or GPU)\n",
|
1105 |
" inputs = inputs.to(device)\n",
|
1106 |
" labels = labels.to(device)\n",
|
1107 |
+
"\n",
|
1108 |
+
" # Forward pass: get model predictions\n",
|
1109 |
" outputs = model(inputs)\n",
|
1110 |
+
"\n",
|
1111 |
+
" # Get the index of the class with the highest score for each sample\n",
|
1112 |
" _, predicted = torch.max(outputs, 1)\n",
|
1113 |
"\n",
|
1114 |
+
" # Compare predictions with true labels, update counters\n",
|
1115 |
" for label, prediction in zip(labels, predicted):\n",
|
1116 |
+
" total_per_class[label.item()] += 1 # increment total count for true class\n",
|
1117 |
" if label == prediction:\n",
|
1118 |
+
" correct_per_class[label.item()] += 1 # increment correct count if prediction is correct\n",
|
1119 |
"\n",
|
1120 |
+
"# Compute per-class accuracy: (correct / total) * 100 for each class\n",
|
1121 |
+
"# class_names[i] is used to label each class properly\n",
|
1122 |
+
"class_acc = {\n",
|
1123 |
+
" class_names[i]: (correct_per_class[i] / total_per_class[i]) * 100\n",
|
1124 |
+
" for i in range(n_classes)\n",
|
1125 |
+
"}\n",
|
1126 |
"\n",
|
1127 |
+
"# Visualization: Bar plot of per-class accuracy\n",
|
1128 |
"plt.figure(figsize=(8, 5))\n",
|
1129 |
+
"plt.bar(class_acc.keys(), class_acc.values(), color='skyblue') # bar plot with class labels and their accuracy\n",
|
1130 |
"plt.ylabel(\"Accuracy (%)\")\n",
|
1131 |
"plt.title(\"Per-Class Accuracy\")\n",
|
1132 |
+
"plt.xticks(rotation=45) # Rotate class names on x-axis for better readability\n",
|
1133 |
+
"plt.ylim(0, 100) # Set y-axis range from 0 to 100 percent\n",
|
1134 |
"plt.grid(True)\n",
|
1135 |
+
"plt.show()\n",
|
1136 |
+
"\n"
|
1137 |
]
|
1138 |
},
|
1139 |
{
|
1140 |
"cell_type": "code",
|
1141 |
+
"execution_count": null,
|
1142 |
"id": "653632e3",
|
1143 |
"metadata": {},
|
1144 |
"outputs": [
|
|
|
1154 |
}
|
1155 |
],
|
1156 |
"source": [
|
1157 |
+
"# Function to visualize misclassified images from the test set\n",
|
1158 |
"def show_misclassified(model, test_loader, class_names, device='cpu', max_images=6):\n",
|
1159 |
+
" # Set model to evaluation mode (turns off dropout, batchnorm updates)\n",
|
1160 |
" model.eval()\n",
|
1161 |
+
" \n",
|
1162 |
+
" # List to store misclassified images and their labels\n",
|
1163 |
" misclassified = []\n",
|
1164 |
"\n",
|
1165 |
+
" # Disable gradient computation for faster inference\n",
|
1166 |
" with torch.no_grad():\n",
|
1167 |
+
" # Iterate through the test set\n",
|
1168 |
" for inputs, labels in test_loader:\n",
|
1169 |
+
" # Move data to device (GPU or CPU)\n",
|
1170 |
" inputs, labels = inputs.to(device), labels.to(device)\n",
|
1171 |
+
" \n",
|
1172 |
+
" # Get predictions from the model\n",
|
1173 |
" outputs = model(inputs)\n",
|
1174 |
" _, preds = torch.max(outputs, 1)\n",
|
1175 |
"\n",
|
1176 |
+
" # Check for misclassified samples\n",
|
1177 |
" for img, true_label, pred_label in zip(inputs, labels, preds):\n",
|
1178 |
" if true_label != pred_label:\n",
|
1179 |
+
" # Save the misclassified image and its true/predicted labels\n",
|
1180 |
" misclassified.append((img.cpu(), true_label.item(), pred_label.item()))\n",
|
1181 |
+
" \n",
|
1182 |
+
" # Stop once we’ve collected enough misclassified samples\n",
|
1183 |
" if len(misclassified) >= max_images:\n",
|
1184 |
" break\n",
|
1185 |
" if len(misclassified) >= max_images:\n",
|
1186 |
" break\n",
|
1187 |
"\n",
|
1188 |
+
" # Plot the misclassified images\n",
|
1189 |
" plt.figure(figsize=(12, 8))\n",
|
1190 |
" for i, (img, true_label, pred_label) in enumerate(misclassified):\n",
|
1191 |
+
" plt.subplot(2, 3, i+1) # Plot up to 6 images in a 2x3 grid\n",
|
1192 |
+
" \n",
|
1193 |
+
" # Convert tensor image to NumPy format and undo normalization\n",
|
1194 |
+
" img = img.permute(1, 2, 0).numpy() # Change shape from [C, H, W] to [H, W, C]\n",
|
1195 |
+
" img = (img * [0.229, 0.224, 0.225]) + [0.485, 0.456, 0.406] # Undo normalization (ImageNet stats)\n",
|
1196 |
+
" img = np.clip(img, 0, 1) # Make sure pixel values are within [0, 1]\n",
|
1197 |
+
"\n",
|
1198 |
+
" # Display the image\n",
|
1199 |
" plt.imshow(img)\n",
|
1200 |
" plt.title(f'True: {class_names[true_label]}\\nPred: {class_names[pred_label]}')\n",
|
1201 |
+
" plt.axis('off') # Hide axis ticks\n",
|
1202 |
+
" \n",
|
1203 |
" plt.tight_layout()\n",
|
1204 |
" plt.show()\n",
|
1205 |
"\n",
|
1206 |
+
"# Call the function to show misclassified samples\n",
|
1207 |
"show_misclassified(model, test_loader, class_names, device=device)\n"
|
1208 |
]
|
1209 |
},
|
|
|
1217 |
},
|
1218 |
{
|
1219 |
"cell_type": "code",
|
1220 |
+
"execution_count": null,
|
1221 |
"id": "45a03f67",
|
1222 |
"metadata": {},
|
1223 |
"outputs": [
|
|
|
1319 |
}
|
1320 |
],
|
1321 |
"source": [
|
1322 |
+
"# Function to visualize a few predictions from the model\n",
|
1323 |
"def visualize_predictions(model, dataloader, class_names, device='cuda', num_images=6):\n",
|
1324 |
+
" model.eval() # Set the model to evaluation mode (no dropout, no gradients)\n",
|
1325 |
+
" images_shown = 0 # Counter for how many images we've displayed\n",
|
1326 |
+
" correct_preds = 0 # Counter for how many predictions were correct\n",
|
1327 |
"\n",
|
1328 |
+
" with torch.no_grad(): # No need to calculate gradients during inference\n",
|
1329 |
" for inputs, labels in dataloader:\n",
|
1330 |
+
" inputs = inputs.to(device) # Move input batch to GPU/CPU\n",
|
1331 |
" labels = labels.to(device)\n",
|
|
|
|
|
1332 |
"\n",
|
1333 |
+
" outputs = model(inputs) # Get model predictions\n",
|
1334 |
+
" _, preds = torch.max(outputs, 1) # Get predicted class indices\n",
|
1335 |
+
"\n",
|
1336 |
+
" # Move back to CPU for visualization\n",
|
1337 |
" inputs = inputs.cpu()\n",
|
1338 |
" labels = labels.cpu()\n",
|
1339 |
" preds = preds.cpu()\n",
|
1340 |
"\n",
|
1341 |
+
" # Loop through the batch and visualize one image at a time\n",
|
1342 |
" for i in range(inputs.size(0)):\n",
|
1343 |
" if images_shown >= num_images:\n",
|
1344 |
+
" # Print final summary and return\n",
|
1345 |
" print(f\"\\n�� Total Correct: {correct_preds}/{num_images} — Accuracy: {(correct_preds / num_images) * 100:.2f}%\")\n",
|
1346 |
" return\n",
|
1347 |
"\n",
|
1348 |
+
" # Convert tensor image to NumPy array and normalize values for visualization\n",
|
1349 |
+
" img = inputs[i].permute(1, 2, 0).numpy() # [C, H, W] -> [H, W, C]\n",
|
1350 |
+
" img = (img - img.min()) / (img.max() - img.min()) # Scale pixel values to [0, 1]\n",
|
1351 |
"\n",
|
1352 |
+
" # Determine if the prediction is correct\n",
|
1353 |
" is_correct = preds[i] == labels[i]\n",
|
1354 |
" correctness = \"✔️ Correct\" if is_correct else \"❌ Wrong\"\n",
|
1355 |
" if is_correct:\n",
|
1356 |
" correct_preds += 1\n",
|
1357 |
"\n",
|
1358 |
+
" # Display the image with its true and predicted labels\n",
|
1359 |
" plt.imshow(img)\n",
|
1360 |
" plt.title(f\"True: {class_names[labels[i]]}\\nPred: {class_names[preds[i]]} | {correctness}\")\n",
|
1361 |
" plt.axis(\"off\")\n",
|
1362 |
" plt.show()\n",
|
1363 |
"\n",
|
1364 |
+
" images_shown += 1 # Increment the counter\n",
|
1365 |
"\n",
|
1366 |
+
" # Final accuracy summary if loop finishes naturally\n",
|
1367 |
" print(f\"\\n✅ Total Correct: {correct_preds}/{num_images} — Accuracy: {(correct_preds / num_images) * 100:.2f}%\")\n",
|
1368 |
"\n",
|
1369 |
"# Example usage\n",
|
1370 |
"class_names = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR']\n",
|
1371 |
+
"visualize_predictions(model, test_loader, class_names, device=device, num_images=8)\n"
|
1372 |
]
|
1373 |
},
|
1374 |
{
|
|
|
1400 |
},
|
1401 |
{
|
1402 |
"cell_type": "code",
|
1403 |
+
"execution_count": null,
|
1404 |
"id": "e1133810",
|
1405 |
"metadata": {},
|
1406 |
"outputs": [
|
|
|
1468 |
"\n",
|
1469 |
"# Example usage:\n",
|
1470 |
"class_names = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR'] # Modify as per your dataset\n",
|
1471 |
+
"image_path = r'D:\\DR_Classification\\dataset\\Splitted_data\\splits\\train\\007-0025-000.jpg' # Replace with your image path\n",
|
1472 |
"predicted_class, confidence_percentage = predict_image(model, image_path, class_names, device='cpu')\n",
|
1473 |
"\n",
|
1474 |
"print(f\"Predicted Class: {predicted_class}\")\n",
|