3v324v23 commited on
Commit
ddfabeb
·
1 Parent(s): f519c0b

fixed path to work in huggingface

Browse files
pages/Dataset.py CHANGED
@@ -44,8 +44,8 @@ with tab2:
44
  st.markdown("### 📊 Training Data Class Distribution")
45
 
46
  # CSV path and image folder path (adjust as needed)
47
- CSV_PATH = r"D:\DR_Classification\dataset\DR_grading.csv"
48
- IMG_FOLDER = r"D:\DR_Classification\dataset\images" # Folder where all images are stored
49
 
50
  # Load CSV
51
  df = pd.read_csv(CSV_PATH)
 
44
  st.markdown("### 📊 Training Data Class Distribution")
45
 
46
  # CSV path and image folder path (adjust as needed)
47
+ CSV_PATH = "./dataset/DR_grading.csv"
48
+ IMG_FOLDER = "./dataset/images" # Folder where all images are stored
49
 
50
  # Load CSV
51
  df = pd.read_csv(CSV_PATH)
pages/Model_Evaluation.py CHANGED
@@ -105,12 +105,12 @@ def load_test_data(csv_path):
105
  def load_model():
106
  model = models.densenet121(pretrained=False)
107
  model.classifier = nn.Linear(model.classifier.in_features, len(class_names))
108
- model.load_state_dict(torch.load(r"Model/Pretrained_Densenet-121.pth", map_location=torch.device('cpu')))
109
  model.eval()
110
  return model
111
 
112
  # ---- Main UI Buttons ----
113
- csv_path = r"D:\DR_Classification\splits\test_labels.csv"
114
  model = load_model()
115
  test_loader = load_test_data(csv_path)
116
 
 
105
  def load_model():
106
  model = models.densenet121(pretrained=False)
107
  model.classifier = nn.Linear(model.classifier.in_features, len(class_names))
108
+ model.load_state_dict(torch.load("./Model/Pretrained_Densenet-121.pth", map_location=torch.device('cpu')))
109
  model.eval()
110
  return model
111
 
112
  # ---- Main UI Buttons ----
113
+ csv_path = "./splits/test_labels.csv"
114
  model = load_model()
115
  test_loader = load_test_data(csv_path)
116
 
pages/Upload_and_Predict.py CHANGED
@@ -57,7 +57,7 @@ class_names = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR']
57
 
58
  # Load sample images from CSV with proper label mapping
59
  @st.cache_data
60
- def load_sample_images_from_csv(csv_path=r'D:\DR_Classification\splits\test_labels.csv'):
61
  df = pd.read_csv(csv_path)
62
  samples = defaultdict(list)
63
 
@@ -76,7 +76,7 @@ def load_sample_images_from_csv(csv_path=r'D:\DR_Classification\splits\test_labe
76
  def load_model():
77
  model = models.densenet121(pretrained=False)
78
  model.classifier = torch.nn.Linear(model.classifier.in_features, len(class_names))
79
- model.load_state_dict(torch.load("Model/Pretrained_Densenet-121.pth", map_location='cpu'))
80
  model.eval()
81
  return model
82
 
 
57
 
58
  # Load sample images from CSV with proper label mapping
59
  @st.cache_data
60
+ def load_sample_images_from_csv(csv_path='./splits/test_labels.csv'):
61
  df = pd.read_csv(csv_path)
62
  samples = defaultdict(list)
63
 
 
76
  def load_model():
77
  model = models.densenet121(pretrained=False)
78
  model.classifier = torch.nn.Linear(model.classifier.in_features, len(class_names))
79
+ model.load_state_dict(torch.load("./Model/Pretrained_Densenet-121.pth", map_location='cpu'))
80
  model.eval()
81
  return model
82