3v324v23 commited on
Commit
eaf9896
Β·
1 Parent(s): 444f947

Added app.py

Browse files
Files changed (1) hide show
  1. app.py +125 -0
app.py CHANGED
@@ -0,0 +1,125 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Directory Structure Suggestion:
2
+ # diabetic_retinopathy_app/
3
+ # β”œβ”€β”€ Home.py (Landing Page)
4
+ # β”œβ”€β”€ pages/
5
+ # β”‚ β”œβ”€β”€ 1_Upload_and_Predict.py
6
+ # β”‚ └── 2_Model_Evaluation.py
7
+ # └── assets/
8
+ # └── banner.jpg
9
+
10
+ # Home.py (Landing Page)
11
+ import streamlit as st
12
+ from PIL import Image
13
+
14
+ def main():
15
+ st.set_page_config(page_title="DR Assistive Tool", layout="centered")
16
+ st.title("Welcome to the Diabetic Retinopathy Assistive Tool")
17
+
18
+ st.markdown("""
19
+ ### 🌟 Your AI-powered assistant for early detection of Diabetic Retinopathy.
20
+
21
+ #### Features:
22
+ - πŸ–ΌοΈ Upload a retinal image and receive a prediction of its DR stage.
23
+ - πŸ“Š Evaluate model performance using real test datasets.
24
+
25
+ Select a page from the left sidebar to get started.
26
+ """)
27
+
28
+ # image = Image.open("assets/banner.jpg") # Optional banner image
29
+ # st.image(image, use_column_width=True)
30
+
31
+ if __name__ == '__main__':
32
+ main()
33
+
34
+
35
+ # pages/1_Upload_and_Predict.py
36
+ import streamlit as st
37
+ import torch
38
+ from torchvision import transforms, models
39
+ from PIL import Image
40
+ import numpy as np
41
+
42
+ st.title("πŸ“· Upload & Predict Diabetic Retinopathy")
43
+
44
+ class_names = ['No DR', 'Mild', 'Moderate', 'Severe', 'Proliferative DR']
45
+
46
+ def load_model():
47
+ model = models.densenet121(pretrained=False)
48
+ num_ftrs = model.classifier.in_features
49
+ model.classifier = torch.nn.Linear(num_ftrs, len(class_names))
50
+ model.load_state_dict(torch.load("training/Pretrained_Densenet-121.pth", map_location='cpu'))
51
+ model.eval()
52
+ return model
53
+
54
+ transform = transforms.Compose([
55
+ transforms.Resize(256),
56
+ transforms.CenterCrop(224),
57
+ transforms.ToTensor(),
58
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
59
+ ])
60
+
61
+ def predict_image(model, image):
62
+ img_tensor = transform(image).unsqueeze(0)
63
+ with torch.no_grad():
64
+ outputs = model(img_tensor)
65
+ _, pred = torch.max(outputs, 1)
66
+ prob = torch.nn.functional.softmax(outputs, dim=1)[0][pred].item() * 100
67
+ return class_names[pred.item()], prob
68
+
69
+ uploaded_file = st.file_uploader("Choose a retinal image", type=["jpg", "png"])
70
+ if uploaded_file is not None:
71
+ image = Image.open(uploaded_file).convert('RGB')
72
+ st.image(image, caption='Uploaded Retinal Image', use_column_width=True)
73
+
74
+ if st.button("🧠 Predict"):
75
+ with st.spinner('Analyzing image...'):
76
+ model = load_model()
77
+ pred_class, prob = predict_image(model, image)
78
+ st.success(f"Prediction: **{pred_class}** ({prob:.2f}% confidence)")
79
+
80
+
81
+ # pages/2_Model_Evaluation.py
82
+ import streamlit as st
83
+ import torch
84
+ from torch.utils.data import DataLoader
85
+ from torchvision import datasets, transforms, models
86
+ import torch.nn as nn
87
+ from tqdm import tqdm
88
+
89
+ st.title("πŸ“ˆ Model Evaluation on Test Dataset")
90
+
91
+ @st.cache_data
92
+
93
+ def load_test_data():
94
+ transform = transforms.Compose([
95
+ transforms.Resize(256),
96
+ transforms.CenterCrop(224),
97
+ transforms.ToTensor(),
98
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
99
+ ])
100
+ test_data = datasets.ImageFolder("test_dataset_path", transform=transform)
101
+ return DataLoader(test_data, batch_size=32, shuffle=False)
102
+
103
+ def evaluate(model, loader):
104
+ model.eval()
105
+ correct, total, loss = 0, 0, 0.0
106
+ criterion = nn.CrossEntropyLoss()
107
+ with torch.no_grad():
108
+ for inputs, labels in loader:
109
+ outputs = model(inputs)
110
+ loss += criterion(outputs, labels).item()
111
+ _, pred = torch.max(outputs, 1)
112
+ correct += (pred == labels).sum().item()
113
+ total += labels.size(0)
114
+ return loss / len(loader), correct / total * 100
115
+
116
+ if st.button("πŸ§ͺ Evaluate Trained Model"):
117
+ test_loader = load_test_data()
118
+ model = models.densenet121(pretrained=False)
119
+ model.classifier = nn.Linear(model.classifier.in_features, 5)
120
+ model.load_state_dict(torch.load("dr_densenet121.pth", map_location='cpu'))
121
+ model.eval()
122
+
123
+ loss, acc = evaluate(model, test_loader)
124
+ st.write(f"**Test Loss:** {loss:.4f}")
125
+ st.write(f"**Test Accuracy:** {acc:.2f}%")