add matplotlib
Browse files
app.py
CHANGED
@@ -1,154 +1,145 @@
|
|
1 |
-
# Ci-Dave from BSCS-AI
|
2 |
-
# Description: This Python script creates a Streamlit web application for image analysis using computer vision techniques and AI-generated explanations.
|
3 |
-
# The app allows users to upload an image, apply edge detection, segmentation, feature extraction, and AI classification.
|
4 |
-
# The explanations for each technique are generated using the Gemini API for AI-generated content.
|
5 |
-
|
6 |
import streamlit as st # Streamlit library to create the web interface
|
7 |
import numpy as np # Library for numerical operations
|
8 |
import google.generativeai as genai # Gemini API for AI-generated explanations
|
9 |
|
10 |
-
#
|
11 |
-
from
|
12 |
-
from
|
13 |
-
|
14 |
-
from skimage.
|
15 |
-
from skimage
|
16 |
-
from
|
17 |
-
from
|
18 |
-
|
19 |
-
|
20 |
-
from sklearn.preprocessing import StandardScaler # Standardization of image data
|
21 |
|
22 |
# Load Gemini API key from Streamlit Secrets configuration
|
23 |
-
api_key = st.secrets["gemini"]["api_key"]
|
24 |
-
genai.configure(api_key=api_key)
|
25 |
|
26 |
-
MODEL_ID = "gemini-1.5-flash"
|
27 |
-
gen_model = genai.GenerativeModel(MODEL_ID)
|
28 |
|
29 |
-
# Function to generate explanations using the Gemini API
|
30 |
def explain_ai(prompt):
|
31 |
"""Generate an explanation using Gemini API with error handling."""
|
32 |
try:
|
33 |
-
response = gen_model.generate_content(prompt)
|
34 |
-
return response.text
|
35 |
except Exception as e:
|
36 |
-
return f"Error: {str(e)}"
|
37 |
|
38 |
# App title
|
39 |
st.title("Imaize: Smart Image Analyzer with XAI")
|
40 |
|
41 |
# Image upload section
|
42 |
-
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
43 |
|
44 |
# App Description
|
45 |
st.markdown("""
|
46 |
This app combines AI-powered image analysis techniques with an easy-to-use interface for explanation generation.
|
47 |
It leverages advanced computer vision algorithms such as **edge detection**, **image segmentation**, and **feature extraction**.
|
48 |
Additionally, the app provides **explanations** for each method used, powered by the Gemini API, to make the process more understandable.
|
49 |
-
|
50 |
-
The main functionalities of the app include:
|
51 |
-
- **Edge Detection**: Choose between the Canny and Sobel edge detection methods.
|
52 |
-
- **Segmentation**: Apply Watershed or Thresholding methods to segment images.
|
53 |
-
- **Feature Extraction**: Extract Histogram of Oriented Gradients (HOG) features from images.
|
54 |
-
- **AI Classification**: Classify images using Random Forest or Logistic Regression models.
|
55 |
-
|
56 |
-
Whether you're exploring computer vision or simply curious about how these techniques work, this app will guide you through the process with easy-to-understand explanations.
|
57 |
""")
|
58 |
|
59 |
-
# Instructions
|
60 |
st.markdown("""
|
61 |
### How to Use the App:
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
6. **Read the Explanations**: For each technique, you'll find a detailed explanation of how it works, powered by AI. Simply read the generated explanation to understand the underlying processes.
|
69 |
-
|
70 |
-
### Enjoy exploring and understanding image analysis techniques with AI!
|
71 |
""")
|
72 |
|
73 |
# If an image is uploaded, proceed with the analysis
|
74 |
if uploaded_file is not None:
|
75 |
-
image = io.imread(uploaded_file)
|
76 |
if image.shape[-1] == 4: # If the image has 4 channels (RGBA), remove the alpha channel
|
77 |
image = image[:, :, :3]
|
78 |
-
|
79 |
-
gray = rgb2gray(image) # Convert the image to grayscale for processing
|
80 |
|
81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
|
83 |
# Edge Detection Section
|
84 |
-
st.subheader("Edge Detection")
|
85 |
-
edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"], key="edge")
|
86 |
-
edges = canny(gray) if edge_method == "Canny" else sobel(gray)
|
87 |
edges = (edges * 255).astype(np.uint8) # Convert edge map to 8-bit image format
|
88 |
-
|
89 |
-
col1, col2 = st.columns([1, 1])
|
90 |
with col1:
|
91 |
-
st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True)
|
92 |
with col2:
|
93 |
-
st.write("### Explanation")
|
94 |
-
explanation = explain_ai(f"Explain how {edge_method} edge detection works in computer vision.")
|
95 |
-
st.text_area("Explanation", explanation, height=300)
|
96 |
|
97 |
# Segmentation Section
|
98 |
-
st.subheader("Segmentation")
|
99 |
-
seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"], key="seg")
|
100 |
-
|
101 |
-
# Perform segmentation based on chosen method
|
102 |
if seg_method == "Watershed":
|
103 |
-
elevation_map = sobel(gray)
|
104 |
-
markers = np.zeros_like(gray)
|
105 |
-
markers[gray < 0.3] = 1
|
106 |
-
markers[gray > 0.7] = 2
|
107 |
-
segmented = watershed(elevation_map, markers.astype(np.int32))
|
108 |
else:
|
109 |
-
threshold_value = st.slider("Choose threshold value", 0, 255, 127)
|
110 |
-
segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255
|
111 |
|
112 |
-
|
|
|
|
|
|
|
113 |
with col1:
|
114 |
-
st.image(
|
115 |
with col2:
|
116 |
-
st.write("### Explanation")
|
117 |
-
explanation = explain_ai(f"Explain how {seg_method} segmentation works in image processing.")
|
118 |
-
st.text_area("Explanation", explanation, height=300)
|
119 |
|
120 |
# HOG Feature Extraction Section
|
121 |
-
st.subheader("HOG Feature Extraction")
|
122 |
-
fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True)
|
123 |
-
|
124 |
-
|
|
|
|
|
|
|
125 |
with col1:
|
126 |
-
st.image(hog_image, caption="HOG Features", use_container_width=True)
|
127 |
with col2:
|
128 |
-
st.write("### Explanation")
|
129 |
-
explanation = explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works.")
|
130 |
-
st.text_area("Explanation", explanation, height=300)
|
131 |
|
132 |
# AI Classification Section
|
133 |
-
st.subheader("AI Classification")
|
134 |
-
model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"], key="model")
|
135 |
-
|
136 |
-
flat_image = gray.flatten().reshape(-1, 1)
|
137 |
-
labels = (flat_image > 0.5).astype(int).flatten()
|
138 |
-
|
139 |
-
|
140 |
-
|
141 |
-
|
142 |
-
|
143 |
-
|
144 |
-
ai_model.
|
145 |
-
predictions =
|
146 |
-
|
147 |
-
|
148 |
-
col1, col2 = st.columns([1, 1]) # Create two columns for layout
|
149 |
with col1:
|
150 |
-
st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True)
|
151 |
with col2:
|
152 |
-
st.write("### Explanation")
|
153 |
-
explanation = explain_ai(f"Explain how {model_choice} is used for image classification.")
|
154 |
-
st.text_area("Explanation", explanation, height=300)
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
import streamlit as st # Streamlit library to create the web interface
|
2 |
import numpy as np # Library for numerical operations
|
3 |
import google.generativeai as genai # Gemini API for AI-generated explanations
|
4 |
|
5 |
+
# Import necessary computer vision functions
|
6 |
+
from skimage.filters import sobel
|
7 |
+
from skimage.segmentation import watershed
|
8 |
+
from skimage.feature import canny, hog
|
9 |
+
from skimage.color import rgb2gray
|
10 |
+
from skimage import io
|
11 |
+
from sklearn.preprocessing import StandardScaler
|
12 |
+
from sklearn.ensemble import RandomForestClassifier
|
13 |
+
from sklearn.linear_model import LogisticRegression
|
14 |
+
import matplotlib.pyplot as plt # For better visualization
|
|
|
15 |
|
16 |
# Load Gemini API key from Streamlit Secrets configuration
|
17 |
+
api_key = st.secrets["gemini"]["api_key"]
|
18 |
+
genai.configure(api_key=api_key)
|
19 |
|
20 |
+
MODEL_ID = "gemini-1.5-flash"
|
21 |
+
gen_model = genai.GenerativeModel(MODEL_ID)
|
22 |
|
|
|
23 |
def explain_ai(prompt):
|
24 |
"""Generate an explanation using Gemini API with error handling."""
|
25 |
try:
|
26 |
+
response = gen_model.generate_content(prompt)
|
27 |
+
return response.text
|
28 |
except Exception as e:
|
29 |
+
return f"Error: {str(e)}"
|
30 |
|
31 |
# App title
|
32 |
st.title("Imaize: Smart Image Analyzer with XAI")
|
33 |
|
34 |
# Image upload section
|
35 |
+
uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
|
36 |
|
37 |
# App Description
|
38 |
st.markdown("""
|
39 |
This app combines AI-powered image analysis techniques with an easy-to-use interface for explanation generation.
|
40 |
It leverages advanced computer vision algorithms such as **edge detection**, **image segmentation**, and **feature extraction**.
|
41 |
Additionally, the app provides **explanations** for each method used, powered by the Gemini API, to make the process more understandable.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
""")
|
43 |
|
44 |
+
# Instructions for using the app
|
45 |
st.markdown("""
|
46 |
### How to Use the App:
|
47 |
+
1. **Upload an Image**: Click on the "Upload an image" button to upload an image (in JPG, PNG, or JPEG format).
|
48 |
+
2. **Edge Detection**: Choose between **Canny** or **Sobel** edge detection methods.
|
49 |
+
3. **Segmentation**: Select **Watershed** or **Thresholding** segmentation.
|
50 |
+
4. **Extract HOG Features**: Visualize the Histogram of Oriented Gradients (HOG) features.
|
51 |
+
5. **AI Classification**: Classify the image using Random Forest or Logistic Regression models.
|
52 |
+
6. **Read the Explanations**: For each technique, you'll find a detailed explanation generated by AI.
|
|
|
|
|
|
|
53 |
""")
|
54 |
|
55 |
# If an image is uploaded, proceed with the analysis
|
56 |
if uploaded_file is not None:
|
57 |
+
image = io.imread(uploaded_file)
|
58 |
if image.shape[-1] == 4: # If the image has 4 channels (RGBA), remove the alpha channel
|
59 |
image = image[:, :, :3]
|
|
|
|
|
60 |
|
61 |
+
# Convert to grayscale
|
62 |
+
gray = rgb2gray(image)
|
63 |
+
|
64 |
+
# Normalize grayscale image to make it visible (if it's in float range 0-1)
|
65 |
+
gray_normalized = (gray * 255).astype(np.uint8) # Convert grayscale image to 8-bit format
|
66 |
+
|
67 |
+
# Display uploaded image
|
68 |
+
st.image(image, caption="Uploaded Image", use_container_width=True)
|
69 |
|
70 |
# Edge Detection Section
|
71 |
+
st.subheader("Edge Detection")
|
72 |
+
edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"], key="edge")
|
73 |
+
edges = canny(gray) if edge_method == "Canny" else sobel(gray)
|
74 |
edges = (edges * 255).astype(np.uint8) # Convert edge map to 8-bit image format
|
75 |
+
|
76 |
+
col1, col2 = st.columns([1, 1])
|
77 |
with col1:
|
78 |
+
st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True)
|
79 |
with col2:
|
80 |
+
st.write("### Explanation")
|
81 |
+
explanation = explain_ai(f"Explain how {edge_method} edge detection works in computer vision.")
|
82 |
+
st.text_area("Explanation", explanation, height=300)
|
83 |
|
84 |
# Segmentation Section
|
85 |
+
st.subheader("Segmentation")
|
86 |
+
seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"], key="seg")
|
87 |
+
|
|
|
88 |
if seg_method == "Watershed":
|
89 |
+
elevation_map = sobel(gray)
|
90 |
+
markers = np.zeros_like(gray)
|
91 |
+
markers[gray < 0.3] = 1
|
92 |
+
markers[gray > 0.7] = 2
|
93 |
+
segmented = watershed(elevation_map, markers.astype(np.int32))
|
94 |
else:
|
95 |
+
threshold_value = st.slider("Choose threshold value", 0, 255, 127)
|
96 |
+
segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255
|
97 |
|
98 |
+
# Normalize segmented result for better visibility
|
99 |
+
segmented_normalized = (segmented * 255).astype(np.uint8)
|
100 |
+
|
101 |
+
col1, col2 = st.columns([1, 1])
|
102 |
with col1:
|
103 |
+
st.image(segmented_normalized, caption=f"{seg_method} Segmentation", use_container_width=True)
|
104 |
with col2:
|
105 |
+
st.write("### Explanation")
|
106 |
+
explanation = explain_ai(f"Explain how {seg_method} segmentation works in image processing.")
|
107 |
+
st.text_area("Explanation", explanation, height=300)
|
108 |
|
109 |
# HOG Feature Extraction Section
|
110 |
+
st.subheader("HOG Feature Extraction")
|
111 |
+
fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True)
|
112 |
+
|
113 |
+
# Normalize HOG image for display
|
114 |
+
hog_image = (hog_image * 255).astype(np.uint8)
|
115 |
+
|
116 |
+
col1, col2 = st.columns([1, 1])
|
117 |
with col1:
|
118 |
+
st.image(hog_image, caption="HOG Features", use_container_width=True)
|
119 |
with col2:
|
120 |
+
st.write("### Explanation")
|
121 |
+
explanation = explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works.")
|
122 |
+
st.text_area("Explanation", explanation, height=300)
|
123 |
|
124 |
# AI Classification Section
|
125 |
+
st.subheader("AI Classification")
|
126 |
+
model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"], key="model")
|
127 |
+
|
128 |
+
flat_image = gray.flatten().reshape(-1, 1)
|
129 |
+
labels = (flat_image > 0.5).astype(int).flatten()
|
130 |
+
|
131 |
+
ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression()
|
132 |
+
scaler = StandardScaler()
|
133 |
+
flat_image_scaled = scaler.fit_transform(flat_image)
|
134 |
+
|
135 |
+
ai_model.fit(flat_image_scaled, labels)
|
136 |
+
predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape)
|
137 |
+
predictions = (predictions * 255).astype(np.uint8)
|
138 |
+
|
139 |
+
col1, col2 = st.columns([1, 1])
|
|
|
140 |
with col1:
|
141 |
+
st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True)
|
142 |
with col2:
|
143 |
+
st.write("### Explanation")
|
144 |
+
explanation = explain_ai(f"Explain how {model_choice} is used for image classification.")
|
145 |
+
st.text_area("Explanation", explanation, height=300)
|