Ci-Dave commited on
Commit
1252a19
·
1 Parent(s): 02abb32

add matplotlib

Browse files
Files changed (1) hide show
  1. app.py +91 -100
app.py CHANGED
@@ -1,154 +1,145 @@
1
- # Ci-Dave from BSCS-AI
2
- # Description: This Python script creates a Streamlit web application for image analysis using computer vision techniques and AI-generated explanations.
3
- # The app allows users to upload an image, apply edge detection, segmentation, feature extraction, and AI classification.
4
- # The explanations for each technique are generated using the Gemini API for AI-generated content.
5
-
6
  import streamlit as st # Streamlit library to create the web interface
7
  import numpy as np # Library for numerical operations
8
  import google.generativeai as genai # Gemini API for AI-generated explanations
9
 
10
- # Random Forest and Logistic Regression model for classification
11
- from sklearn.ensemble import RandomForestClassifier
12
- from sklearn.linear_model import LogisticRegression
13
-
14
- from skimage.filters import sobel # Sobel edge detection filter from skimage
15
- from skimage.segmentation import watershed # Watershed segmentation method
16
- from skimage.feature import canny, hog # Canny edge detection and HOG feature extraction
17
- from skimage.color import rgb2gray # Convert RGB images to grayscale
18
-
19
- from skimage import io # I/O functions for reading images
20
- from sklearn.preprocessing import StandardScaler # Standardization of image data
21
 
22
  # Load Gemini API key from Streamlit Secrets configuration
23
- api_key = st.secrets["gemini"]["api_key"] # Get API key from Streamlit secrets
24
- genai.configure(api_key=api_key) # Configure the Gemini API with the API key
25
 
26
- MODEL_ID = "gemini-1.5-flash" # Specify the model ID for Gemini
27
- gen_model = genai.GenerativeModel(MODEL_ID) # Initialize the Gemini model
28
 
29
- # Function to generate explanations using the Gemini API
30
  def explain_ai(prompt):
31
  """Generate an explanation using Gemini API with error handling."""
32
  try:
33
- response = gen_model.generate_content(prompt) # Get AI-generated content based on prompt
34
- return response.text # Return the explanation text
35
  except Exception as e:
36
- return f"Error: {str(e)}" # Return error message if there's an issue
37
 
38
  # App title
39
  st.title("Imaize: Smart Image Analyzer with XAI")
40
 
41
  # Image upload section
42
- uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) # Allow user to upload an image file
43
 
44
  # App Description
45
  st.markdown("""
46
  This app combines AI-powered image analysis techniques with an easy-to-use interface for explanation generation.
47
  It leverages advanced computer vision algorithms such as **edge detection**, **image segmentation**, and **feature extraction**.
48
  Additionally, the app provides **explanations** for each method used, powered by the Gemini API, to make the process more understandable.
49
-
50
- The main functionalities of the app include:
51
- - **Edge Detection**: Choose between the Canny and Sobel edge detection methods.
52
- - **Segmentation**: Apply Watershed or Thresholding methods to segment images.
53
- - **Feature Extraction**: Extract Histogram of Oriented Gradients (HOG) features from images.
54
- - **AI Classification**: Classify images using Random Forest or Logistic Regression models.
55
-
56
- Whether you're exploring computer vision or simply curious about how these techniques work, this app will guide you through the process with easy-to-understand explanations.
57
  """)
58
 
59
- # Instructions on how to use the app
60
  st.markdown("""
61
  ### How to Use the App:
62
-
63
- 1. **Upload an Image**: Click on the "Upload an image" button to upload an image (in JPG, PNG, or JPEG format) for analysis.
64
- 2. **Select Edge Detection**: Choose between **Canny** or **Sobel** edge detection methods. The app will process the image and display the result.
65
- 3. **Apply Segmentation**: Select **Watershed** or **Thresholding** segmentation. You can also adjust the threshold for thresholding segmentation.
66
- 4. **Extract HOG Features**: Visualize the HOG (Histogram of Oriented Gradients) features from the image.
67
- 5. **Choose AI Model for Classification**: Select either **Random Forest** or **Logistic Regression** to classify the image based on pixel information.
68
- 6. **Read the Explanations**: For each technique, you'll find a detailed explanation of how it works, powered by AI. Simply read the generated explanation to understand the underlying processes.
69
-
70
- ### Enjoy exploring and understanding image analysis techniques with AI!
71
  """)
72
 
73
  # If an image is uploaded, proceed with the analysis
74
  if uploaded_file is not None:
75
- image = io.imread(uploaded_file) # Read the uploaded image using skimage
76
  if image.shape[-1] == 4: # If the image has 4 channels (RGBA), remove the alpha channel
77
  image = image[:, :, :3]
78
-
79
- gray = rgb2gray(image) # Convert the image to grayscale for processing
80
 
81
- st.image(image, caption="Uploaded Image", use_container_width=True) # Display the uploaded image
 
 
 
 
 
 
 
82
 
83
  # Edge Detection Section
84
- st.subheader("Edge Detection") # Title for edge detection section
85
- edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"], key="edge") # Select edge detection method
86
- edges = canny(gray) if edge_method == "Canny" else sobel(gray) # Apply chosen edge detection method
87
  edges = (edges * 255).astype(np.uint8) # Convert edge map to 8-bit image format
88
-
89
- col1, col2 = st.columns([1, 1]) # Create two columns for layout
90
  with col1:
91
- st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True) # Display the edge detection result
92
  with col2:
93
- st.write("### Explanation") # Show explanation header
94
- explanation = explain_ai(f"Explain how {edge_method} edge detection works in computer vision.") # Get explanation from AI
95
- st.text_area("Explanation", explanation, height=300) # Display explanation in a text area
96
 
97
  # Segmentation Section
98
- st.subheader("Segmentation") # Title for segmentation section
99
- seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"], key="seg") # Select segmentation method
100
-
101
- # Perform segmentation based on chosen method
102
  if seg_method == "Watershed":
103
- elevation_map = sobel(gray) # Create elevation map using Sobel filter
104
- markers = np.zeros_like(gray) # Initialize marker array
105
- markers[gray < 0.3] = 1 # Mark low-intensity regions
106
- markers[gray > 0.7] = 2 # Mark high-intensity regions
107
- segmented = watershed(elevation_map, markers.astype(np.int32)) # Apply watershed segmentation
108
  else:
109
- threshold_value = st.slider("Choose threshold value", 0, 255, 127) # Slider to choose threshold value
110
- segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255 # Apply thresholding segmentation
111
 
112
- col1, col2 = st.columns([1, 1]) # Create two columns for layout
 
 
 
113
  with col1:
114
- st.image(segmented, caption=f"{seg_method} Segmentation", use_container_width=True) # Display segmentation result
115
  with col2:
116
- st.write("### Explanation") # Show explanation header
117
- explanation = explain_ai(f"Explain how {seg_method} segmentation works in image processing.") # Get explanation from AI
118
- st.text_area("Explanation", explanation, height=300) # Display explanation in a text area
119
 
120
  # HOG Feature Extraction Section
121
- st.subheader("HOG Feature Extraction") # Title for HOG feature extraction section
122
- fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True) # Extract HOG features
123
-
124
- col1, col2 = st.columns([1, 1]) # Create two columns for layout
 
 
 
125
  with col1:
126
- st.image(hog_image, caption="HOG Features", use_container_width=True) # Display HOG feature image
127
  with col2:
128
- st.write("### Explanation") # Show explanation header
129
- explanation = explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works.") # Get explanation from AI
130
- st.text_area("Explanation", explanation, height=300) # Display explanation in a text area
131
 
132
  # AI Classification Section
133
- st.subheader("AI Classification") # Title for AI classification section
134
- model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"], key="model") # Select AI model for classification
135
-
136
- flat_image = gray.flatten().reshape(-1, 1) # Flatten the grayscale image into a 1D array for classification
137
- labels = (flat_image > 0.5).astype(int).flatten() # Generate binary labels based on intensity threshold
138
-
139
- # Choose model (Random Forest or Logistic Regression)
140
- ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression() # Initialize the model
141
- scaler = StandardScaler() # Standardize the image data for better classification
142
- flat_image_scaled = scaler.fit_transform(flat_image) # Scale the image data
143
-
144
- ai_model.fit(flat_image_scaled, labels) # Train the AI model on the image data
145
- predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape) # Make predictions on the image
146
- predictions = (predictions * 255).astype(np.uint8) # Convert predictions to 8-bit image format
147
-
148
- col1, col2 = st.columns([1, 1]) # Create two columns for layout
149
  with col1:
150
- st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True) # Display classification result
151
  with col2:
152
- st.write("### Explanation") # Show explanation header
153
- explanation = explain_ai(f"Explain how {model_choice} is used for image classification.") # Get explanation from AI
154
- st.text_area("Explanation", explanation, height=300) # Display explanation in a text area
 
 
 
 
 
 
1
  import streamlit as st # Streamlit library to create the web interface
2
  import numpy as np # Library for numerical operations
3
  import google.generativeai as genai # Gemini API for AI-generated explanations
4
 
5
+ # Import necessary computer vision functions
6
+ from skimage.filters import sobel
7
+ from skimage.segmentation import watershed
8
+ from skimage.feature import canny, hog
9
+ from skimage.color import rgb2gray
10
+ from skimage import io
11
+ from sklearn.preprocessing import StandardScaler
12
+ from sklearn.ensemble import RandomForestClassifier
13
+ from sklearn.linear_model import LogisticRegression
14
+ import matplotlib.pyplot as plt # For better visualization
 
15
 
16
  # Load Gemini API key from Streamlit Secrets configuration
17
+ api_key = st.secrets["gemini"]["api_key"]
18
+ genai.configure(api_key=api_key)
19
 
20
+ MODEL_ID = "gemini-1.5-flash"
21
+ gen_model = genai.GenerativeModel(MODEL_ID)
22
 
 
23
  def explain_ai(prompt):
24
  """Generate an explanation using Gemini API with error handling."""
25
  try:
26
+ response = gen_model.generate_content(prompt)
27
+ return response.text
28
  except Exception as e:
29
+ return f"Error: {str(e)}"
30
 
31
  # App title
32
  st.title("Imaize: Smart Image Analyzer with XAI")
33
 
34
  # Image upload section
35
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"])
36
 
37
  # App Description
38
  st.markdown("""
39
  This app combines AI-powered image analysis techniques with an easy-to-use interface for explanation generation.
40
  It leverages advanced computer vision algorithms such as **edge detection**, **image segmentation**, and **feature extraction**.
41
  Additionally, the app provides **explanations** for each method used, powered by the Gemini API, to make the process more understandable.
 
 
 
 
 
 
 
 
42
  """)
43
 
44
+ # Instructions for using the app
45
  st.markdown("""
46
  ### How to Use the App:
47
+ 1. **Upload an Image**: Click on the "Upload an image" button to upload an image (in JPG, PNG, or JPEG format).
48
+ 2. **Edge Detection**: Choose between **Canny** or **Sobel** edge detection methods.
49
+ 3. **Segmentation**: Select **Watershed** or **Thresholding** segmentation.
50
+ 4. **Extract HOG Features**: Visualize the Histogram of Oriented Gradients (HOG) features.
51
+ 5. **AI Classification**: Classify the image using Random Forest or Logistic Regression models.
52
+ 6. **Read the Explanations**: For each technique, you'll find a detailed explanation generated by AI.
 
 
 
53
  """)
54
 
55
  # If an image is uploaded, proceed with the analysis
56
  if uploaded_file is not None:
57
+ image = io.imread(uploaded_file)
58
  if image.shape[-1] == 4: # If the image has 4 channels (RGBA), remove the alpha channel
59
  image = image[:, :, :3]
 
 
60
 
61
+ # Convert to grayscale
62
+ gray = rgb2gray(image)
63
+
64
+ # Normalize grayscale image to make it visible (if it's in float range 0-1)
65
+ gray_normalized = (gray * 255).astype(np.uint8) # Convert grayscale image to 8-bit format
66
+
67
+ # Display uploaded image
68
+ st.image(image, caption="Uploaded Image", use_container_width=True)
69
 
70
  # Edge Detection Section
71
+ st.subheader("Edge Detection")
72
+ edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"], key="edge")
73
+ edges = canny(gray) if edge_method == "Canny" else sobel(gray)
74
  edges = (edges * 255).astype(np.uint8) # Convert edge map to 8-bit image format
75
+
76
+ col1, col2 = st.columns([1, 1])
77
  with col1:
78
+ st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True)
79
  with col2:
80
+ st.write("### Explanation")
81
+ explanation = explain_ai(f"Explain how {edge_method} edge detection works in computer vision.")
82
+ st.text_area("Explanation", explanation, height=300)
83
 
84
  # Segmentation Section
85
+ st.subheader("Segmentation")
86
+ seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"], key="seg")
87
+
 
88
  if seg_method == "Watershed":
89
+ elevation_map = sobel(gray)
90
+ markers = np.zeros_like(gray)
91
+ markers[gray < 0.3] = 1
92
+ markers[gray > 0.7] = 2
93
+ segmented = watershed(elevation_map, markers.astype(np.int32))
94
  else:
95
+ threshold_value = st.slider("Choose threshold value", 0, 255, 127)
96
+ segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255
97
 
98
+ # Normalize segmented result for better visibility
99
+ segmented_normalized = (segmented * 255).astype(np.uint8)
100
+
101
+ col1, col2 = st.columns([1, 1])
102
  with col1:
103
+ st.image(segmented_normalized, caption=f"{seg_method} Segmentation", use_container_width=True)
104
  with col2:
105
+ st.write("### Explanation")
106
+ explanation = explain_ai(f"Explain how {seg_method} segmentation works in image processing.")
107
+ st.text_area("Explanation", explanation, height=300)
108
 
109
  # HOG Feature Extraction Section
110
+ st.subheader("HOG Feature Extraction")
111
+ fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True)
112
+
113
+ # Normalize HOG image for display
114
+ hog_image = (hog_image * 255).astype(np.uint8)
115
+
116
+ col1, col2 = st.columns([1, 1])
117
  with col1:
118
+ st.image(hog_image, caption="HOG Features", use_container_width=True)
119
  with col2:
120
+ st.write("### Explanation")
121
+ explanation = explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works.")
122
+ st.text_area("Explanation", explanation, height=300)
123
 
124
  # AI Classification Section
125
+ st.subheader("AI Classification")
126
+ model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"], key="model")
127
+
128
+ flat_image = gray.flatten().reshape(-1, 1)
129
+ labels = (flat_image > 0.5).astype(int).flatten()
130
+
131
+ ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression()
132
+ scaler = StandardScaler()
133
+ flat_image_scaled = scaler.fit_transform(flat_image)
134
+
135
+ ai_model.fit(flat_image_scaled, labels)
136
+ predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape)
137
+ predictions = (predictions * 255).astype(np.uint8)
138
+
139
+ col1, col2 = st.columns([1, 1])
 
140
  with col1:
141
+ st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True)
142
  with col2:
143
+ st.write("### Explanation")
144
+ explanation = explain_ai(f"Explain how {model_choice} is used for image classification.")
145
+ st.text_area("Explanation", explanation, height=300)