Ci-Dave commited on
Commit
bd780cd
·
1 Parent(s): cad7db6

Added new files with .gitignore

Browse files
Files changed (4) hide show
  1. .gitignore +1 -0
  2. .streamlit/secrets.toml +2 -0
  3. app.py +154 -0
  4. requirements +7 -0
.gitignore ADDED
@@ -0,0 +1 @@
 
 
1
+ .venv/
.streamlit/secrets.toml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ [gemini]
2
+ api_key = "AIzaSyBavKv_J522lZkirjVMx5WH-cXvPylddMY"
app.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Ci-Dave from BSCS-AI
2
+ # Description: This Python script creates a Streamlit web application for image analysis using computer vision techniques and AI-generated explanations.
3
+ # The app allows users to upload an image, apply edge detection, segmentation, feature extraction, and AI classification.
4
+ # The explanations for each technique are generated using the Gemini API for AI-generated content.
5
+
6
+ import streamlit as st # Streamlit library to create the web interface
7
+ import numpy as np # Library for numerical operations
8
+ import google.generativeai as genai # Gemini API for AI-generated explanations
9
+
10
+ # Random Forest and Logistic Regression model for classification
11
+ from sklearn.ensemble import RandomForestClassifier
12
+ from sklearn.linear_model import LogisticRegression
13
+
14
+ from skimage.filters import sobel # Sobel edge detection filter from skimage
15
+ from skimage.segmentation import watershed # Watershed segmentation method
16
+ from skimage.feature import canny, hog # Canny edge detection and HOG feature extraction
17
+ from skimage.color import rgb2gray # Convert RGB images to grayscale
18
+
19
+ from skimage import io # I/O functions for reading images
20
+ from sklearn.preprocessing import StandardScaler # Standardization of image data
21
+
22
+ # Load Gemini API key from Streamlit Secrets configuration
23
+ api_key = st.secrets["gemini"]["api_key"] # Get API key from Streamlit secrets
24
+ genai.configure(api_key=api_key) # Configure the Gemini API with the API key
25
+
26
+ MODEL_ID = "gemini-1.5-flash" # Specify the model ID for Gemini
27
+ gen_model = genai.GenerativeModel(MODEL_ID) # Initialize the Gemini model
28
+
29
+ # Function to generate explanations using the Gemini API
30
+ def explain_ai(prompt):
31
+ """Generate an explanation using Gemini API with error handling."""
32
+ try:
33
+ response = gen_model.generate_content(prompt) # Get AI-generated content based on prompt
34
+ return response.text # Return the explanation text
35
+ except Exception as e:
36
+ return f"Error: {str(e)}" # Return error message if there's an issue
37
+
38
+ # App title
39
+ st.title("Imaize: Smart Image Analyzer with XAI")
40
+
41
+ # Image upload section
42
+ uploaded_file = st.file_uploader("Upload an image", type=["jpg", "png", "jpeg"]) # Allow user to upload an image file
43
+
44
+ # App Description
45
+ st.markdown("""
46
+ This app combines AI-powered image analysis techniques with an easy-to-use interface for explanation generation.
47
+ It leverages advanced computer vision algorithms such as **edge detection**, **image segmentation**, and **feature extraction**.
48
+ Additionally, the app provides **explanations** for each method used, powered by the Gemini API, to make the process more understandable.
49
+
50
+ The main functionalities of the app include:
51
+ - **Edge Detection**: Choose between the Canny and Sobel edge detection methods.
52
+ - **Segmentation**: Apply Watershed or Thresholding methods to segment images.
53
+ - **Feature Extraction**: Extract Histogram of Oriented Gradients (HOG) features from images.
54
+ - **AI Classification**: Classify images using Random Forest or Logistic Regression models.
55
+
56
+ Whether you're exploring computer vision or simply curious about how these techniques work, this app will guide you through the process with easy-to-understand explanations.
57
+ """)
58
+
59
+ # Instructions on how to use the app
60
+ st.markdown("""
61
+ ### How to Use the App:
62
+
63
+ 1. **Upload an Image**: Click on the "Upload an image" button to upload an image (in JPG, PNG, or JPEG format) for analysis.
64
+ 2. **Select Edge Detection**: Choose between **Canny** or **Sobel** edge detection methods. The app will process the image and display the result.
65
+ 3. **Apply Segmentation**: Select **Watershed** or **Thresholding** segmentation. You can also adjust the threshold for thresholding segmentation.
66
+ 4. **Extract HOG Features**: Visualize the HOG (Histogram of Oriented Gradients) features from the image.
67
+ 5. **Choose AI Model for Classification**: Select either **Random Forest** or **Logistic Regression** to classify the image based on pixel information.
68
+ 6. **Read the Explanations**: For each technique, you'll find a detailed explanation of how it works, powered by AI. Simply read the generated explanation to understand the underlying processes.
69
+
70
+ ### Enjoy exploring and understanding image analysis techniques with AI!
71
+ """)
72
+
73
+ # If an image is uploaded, proceed with the analysis
74
+ if uploaded_file is not None:
75
+ image = io.imread(uploaded_file) # Read the uploaded image using skimage
76
+ if image.shape[-1] == 4: # If the image has 4 channels (RGBA), remove the alpha channel
77
+ image = image[:, :, :3]
78
+
79
+ gray = rgb2gray(image) # Convert the image to grayscale for processing
80
+
81
+ st.image(image, caption="Uploaded Image", use_container_width=True) # Display the uploaded image
82
+
83
+ # Edge Detection Section
84
+ st.subheader("Edge Detection") # Title for edge detection section
85
+ edge_method = st.selectbox("Select Edge Detection Method", ["Canny", "Sobel"], key="edge") # Select edge detection method
86
+ edges = canny(gray) if edge_method == "Canny" else sobel(gray) # Apply chosen edge detection method
87
+ edges = (edges * 255).astype(np.uint8) # Convert edge map to 8-bit image format
88
+
89
+ col1, col2 = st.columns([1, 1]) # Create two columns for layout
90
+ with col1:
91
+ st.image(edges, caption=f"{edge_method} Edge Detection", use_container_width=True) # Display the edge detection result
92
+ with col2:
93
+ st.write("### Explanation") # Show explanation header
94
+ explanation = explain_ai(f"Explain how {edge_method} edge detection works in computer vision.") # Get explanation from AI
95
+ st.text_area("Explanation", explanation, height=300) # Display explanation in a text area
96
+
97
+ # Segmentation Section
98
+ st.subheader("Segmentation") # Title for segmentation section
99
+ seg_method = st.selectbox("Select Segmentation Method", ["Watershed", "Thresholding"], key="seg") # Select segmentation method
100
+
101
+ # Perform segmentation based on chosen method
102
+ if seg_method == "Watershed":
103
+ elevation_map = sobel(gray) # Create elevation map using Sobel filter
104
+ markers = np.zeros_like(gray) # Initialize marker array
105
+ markers[gray < 0.3] = 1 # Mark low-intensity regions
106
+ markers[gray > 0.7] = 2 # Mark high-intensity regions
107
+ segmented = watershed(elevation_map, markers.astype(np.int32)) # Apply watershed segmentation
108
+ else:
109
+ threshold_value = st.slider("Choose threshold value", 0, 255, 127) # Slider to choose threshold value
110
+ segmented = (gray > (threshold_value / 255)).astype(np.uint8) * 255 # Apply thresholding segmentation
111
+
112
+ col1, col2 = st.columns([1, 1]) # Create two columns for layout
113
+ with col1:
114
+ st.image(segmented, caption=f"{seg_method} Segmentation", use_container_width=True) # Display segmentation result
115
+ with col2:
116
+ st.write("### Explanation") # Show explanation header
117
+ explanation = explain_ai(f"Explain how {seg_method} segmentation works in image processing.") # Get explanation from AI
118
+ st.text_area("Explanation", explanation, height=300) # Display explanation in a text area
119
+
120
+ # HOG Feature Extraction Section
121
+ st.subheader("HOG Feature Extraction") # Title for HOG feature extraction section
122
+ fd, hog_image = hog(gray, pixels_per_cell=(8, 8), cells_per_block=(2, 2), visualize=True) # Extract HOG features
123
+
124
+ col1, col2 = st.columns([1, 1]) # Create two columns for layout
125
+ with col1:
126
+ st.image(hog_image, caption="HOG Features", use_container_width=True) # Display HOG feature image
127
+ with col2:
128
+ st.write("### Explanation") # Show explanation header
129
+ explanation = explain_ai("Explain how Histogram of Oriented Gradients (HOG) feature extraction works.") # Get explanation from AI
130
+ st.text_area("Explanation", explanation, height=300) # Display explanation in a text area
131
+
132
+ # AI Classification Section
133
+ st.subheader("AI Classification") # Title for AI classification section
134
+ model_choice = st.selectbox("Select AI Model", ["Random Forest", "Logistic Regression"], key="model") # Select AI model for classification
135
+
136
+ flat_image = gray.flatten().reshape(-1, 1) # Flatten the grayscale image into a 1D array for classification
137
+ labels = (flat_image > 0.5).astype(int).flatten() # Generate binary labels based on intensity threshold
138
+
139
+ # Choose model (Random Forest or Logistic Regression)
140
+ ai_model = RandomForestClassifier(n_jobs=1) if model_choice == "Random Forest" else LogisticRegression() # Initialize the model
141
+ scaler = StandardScaler() # Standardize the image data for better classification
142
+ flat_image_scaled = scaler.fit_transform(flat_image) # Scale the image data
143
+
144
+ ai_model.fit(flat_image_scaled, labels) # Train the AI model on the image data
145
+ predictions = ai_model.predict(flat_image_scaled).reshape(gray.shape) # Make predictions on the image
146
+ predictions = (predictions * 255).astype(np.uint8) # Convert predictions to 8-bit image format
147
+
148
+ col1, col2 = st.columns([1, 1]) # Create two columns for layout
149
+ with col1:
150
+ st.image(predictions, caption=f"{model_choice} Pixel Classification", use_container_width=True) # Display classification result
151
+ with col2:
152
+ st.write("### Explanation") # Show explanation header
153
+ explanation = explain_ai(f"Explain how {model_choice} is used for image classification.") # Get explanation from AI
154
+ st.text_area("Explanation", explanation, height=300) # Display explanation in a text area
requirements ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ streamlit
2
+ opencv-python
3
+ numpy
4
+ matplotlib
5
+ scikit-learn
6
+ scikit-image
7
+ google.generativeai