Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -6,7 +6,7 @@ import streamlit as st
|
|
6 |
from transformers import pipeline, AutoModelForMaskedLM, AutoTokenizer
|
7 |
|
8 |
|
9 |
-
st.title("Completamento
|
10 |
st.write("Inserisci un testo con il token [MASK] per vedere le previsioni del modello.")
|
11 |
|
12 |
|
@@ -15,9 +15,6 @@ st.write("Asdrubal, frater Annibalis, qui secundo Punico bello [MASK] ingentibus
|
|
15 |
st.write("hanno et mago qui [MASK] punico bello cornelium consulem aput liparas ceperunt > primo");
|
16 |
st.write("Lorem ipsum dolor sit amet, [MASK] adipiscing elit. > consectetur");
|
17 |
st.write("Populus Romanus cum Macedonibus [MASK] ter gessit => bellum");
|
18 |
-
#Asdrubal, frater Annibalis, qui secundo Punico bello [MASK] ingentibus copiis ab Hispania veniens => cum
|
19 |
-
#hanno et mago qui [MASK] punico bello cornelium consulem aput liparas ceperunt => primo
|
20 |
-
#Lorem ipsum dolor sit amet, [MASK] adipiscing elit. => consectetur
|
21 |
input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] adipiscing elit.")
|
22 |
|
23 |
# Model based on BERT
|
@@ -25,39 +22,20 @@ input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] a
|
|
25 |
#Hugging face LuisAVasquez/simple-latin-bert-uncased
|
26 |
#modelname_lv = "LuisAVasquez/simple-latin-bert-uncased"
|
27 |
#https://github.com/dbamman/latin-bert
|
28 |
-
modelname = "./models/bert-base-latin-uncased"
|
29 |
|
30 |
#ClassCat/roberta-base-latin-v2
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
tokenizer_robertapstroe = AutoTokenizer.from_pretrained("pstroe/roberta-base-latin-cased")
|
39 |
-
model_robertapstroe = AutoModelForMaskedLM.from_pretrained("pstroe/roberta-base-latin-cased")
|
40 |
-
fill_mask_robertapstroe = pipeline("fill-mask", model=model_robertapstroe, tokenizer=tokenizer_robertapstroe)
|
41 |
-
|
42 |
-
tokenizer = AutoTokenizer.from_pretrained(modelname)
|
43 |
-
model = AutoModelForMaskedLM.from_pretrained(modelname)
|
44 |
-
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
45 |
-
|
46 |
|
47 |
|
48 |
if input_text:
|
49 |
predictions = fill_mask(input_text)
|
50 |
-
|
51 |
-
for pred in predictions:
|
52 |
-
st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
|
53 |
input_text_roberta = input_text.replace("[MASK]", "<mask>")
|
54 |
-
|
55 |
-
st.subheader("Risultati delle previsioni
|
56 |
-
for
|
57 |
-
st.write(f"**Parola**: {
|
58 |
-
predictions_robertapstroe = fill_mask_robertapstroe(input_text_roberta)
|
59 |
-
st.subheader("Risultati delle previsioni con Roberta Pstroe:")
|
60 |
-
for pred_robertapstroe in predictions_robertapstroe:
|
61 |
-
st.write(f"**Parola**: {pred_robertapstroe['token_str']}, **Probabilità**: {pred_robertapstroe['score']:.4f}, **Sequence**: {pred_robertapstroe['sequence']}")
|
62 |
|
63 |
|
|
|
6 |
from transformers import pipeline, AutoModelForMaskedLM, AutoTokenizer
|
7 |
|
8 |
|
9 |
+
st.title("Completamento di parole in testi Latino Antico")
|
10 |
st.write("Inserisci un testo con il token [MASK] per vedere le previsioni del modello.")
|
11 |
|
12 |
|
|
|
15 |
st.write("hanno et mago qui [MASK] punico bello cornelium consulem aput liparas ceperunt > primo");
|
16 |
st.write("Lorem ipsum dolor sit amet, [MASK] adipiscing elit. > consectetur");
|
17 |
st.write("Populus Romanus cum Macedonibus [MASK] ter gessit => bellum");
|
|
|
|
|
|
|
18 |
input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] adipiscing elit.")
|
19 |
|
20 |
# Model based on BERT
|
|
|
22 |
#Hugging face LuisAVasquez/simple-latin-bert-uncased
|
23 |
#modelname_lv = "LuisAVasquez/simple-latin-bert-uncased"
|
24 |
#https://github.com/dbamman/latin-bert
|
|
|
25 |
|
26 |
#ClassCat/roberta-base-latin-v2
|
27 |
+
tokenizer_roberta = AutoTokenizer.from_pretrained("Cicciokr/Roberta-Base-Latin-Uncased")
|
28 |
+
model_roberta = AutoModelForMaskedLM.from_pretrained("Cicciokr/Roberta-Base-Latin-Uncased")
|
29 |
+
fill_mask_roberta = pipeline("fill-mask", model=model_robertaclasscat, tokenizer=tokenizer_robertaclasscat)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
|
31 |
|
32 |
if input_text:
|
33 |
predictions = fill_mask(input_text)
|
34 |
+
|
|
|
|
|
35 |
input_text_roberta = input_text.replace("[MASK]", "<mask>")
|
36 |
+
predictions_roberta = fill_mask_roberta(input_text_roberta)
|
37 |
+
st.subheader("Risultati delle previsioni:")
|
38 |
+
for pred_roberta in predictions_roberta:
|
39 |
+
st.write(f"**Parola**: {pred_roberta['token_str']}, **Probabilità**: {pred_roberta['score']:.4f}, **Sequence**: {pred_roberta['sequence']}")
|
|
|
|
|
|
|
|
|
40 |
|
41 |
|