Cicciokr commited on
Commit
1791992
·
verified ·
1 Parent(s): 35550d2

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +1 -12
app.py CHANGED
@@ -28,11 +28,6 @@ input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] a
28
  modelname = "./models/bert-base-latin-uncased"
29
 
30
 
31
-
32
- #tokenizer_roberta = AutoTokenizer.from_pretrained("pstroe/roberta-base-latin-cased3")
33
- #model_roberta = AutoModelForMaskedLM.from_pretrained("pstroe/roberta-base-latin-cased3")
34
- #fill_mask_roberta = pipeline("fill-mask", model=model_roberta, tokenizer=tokenizer_roberta)
35
-
36
  tokenizer_robertaclasscat = AutoTokenizer.from_pretrained("ClassCat/roberta-base-latin-v2")
37
  model_robertaclasscat = AutoModelForMaskedLM.from_pretrained("ClassCat/roberta-base-latin-v2")
38
  fill_mask_robertaclasscat = pipeline("fill-mask", model=model_robertaclasscat, tokenizer=tokenizer_robertaclasscat)
@@ -41,9 +36,7 @@ tokenizer = AutoTokenizer.from_pretrained(modelname)
41
  model = AutoModelForMaskedLM.from_pretrained(modelname)
42
  fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
43
 
44
- #tokenizer_lv = AutoTokenizer.from_pretrained(modelname_lv)
45
- #model_lv = AutoModelForMaskedLM.from_pretrained(modelname_lv)
46
- #fill_mask_lv = pipeline("fill-mask", model=model_lv, tokenizer=tokenizer_lv)
47
 
48
  if input_text:
49
  predictions = fill_mask(input_text)
@@ -51,10 +44,6 @@ if input_text:
51
  for pred in predictions:
52
  st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
53
  input_text_roberta = input_text.replace("[MASK]", "<mask>")
54
- #predictions_roberta = fill_mask_roberta(input_text_roberta)
55
- #st.subheader("Risultati delle previsioni con Roberta Base Latin Cased 3:")
56
- #for pred_roberta in predictions_roberta:
57
- # st.write(f"**Parola**: {pred_roberta['token_str']}, **Probabilità**: {pred_roberta['score']:.4f}, **Sequence**: {pred_roberta['sequence']}")
58
  predictions_robertaclasscat = fill_mask_robertaclasscat(input_text_roberta)
59
  st.subheader("Risultati delle previsioni con Roberta:")
60
  for pred_robertaclasscat in predictions_robertaclasscat:
 
28
  modelname = "./models/bert-base-latin-uncased"
29
 
30
 
 
 
 
 
 
31
  tokenizer_robertaclasscat = AutoTokenizer.from_pretrained("ClassCat/roberta-base-latin-v2")
32
  model_robertaclasscat = AutoModelForMaskedLM.from_pretrained("ClassCat/roberta-base-latin-v2")
33
  fill_mask_robertaclasscat = pipeline("fill-mask", model=model_robertaclasscat, tokenizer=tokenizer_robertaclasscat)
 
36
  model = AutoModelForMaskedLM.from_pretrained(modelname)
37
  fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
38
 
39
+
 
 
40
 
41
  if input_text:
42
  predictions = fill_mask(input_text)
 
44
  for pred in predictions:
45
  st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
46
  input_text_roberta = input_text.replace("[MASK]", "<mask>")
 
 
 
 
47
  predictions_robertaclasscat = fill_mask_robertaclasscat(input_text_roberta)
48
  st.subheader("Risultati delle previsioni con Roberta:")
49
  for pred_robertaclasscat in predictions_robertaclasscat: