Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from transformers import pipeline, AutoModelForMaskedLM, AutoTokenizer
|
3 |
+
from cltk.data.fetch import FetchCorpus
|
4 |
+
import builtins
|
5 |
+
import os
|
6 |
+
import json
|
7 |
+
|
8 |
+
DATA_FILE = "data.json"
|
9 |
+
|
10 |
+
def load_data():
|
11 |
+
"""Carica i dati salvati (token e frasi) dal file JSON."""
|
12 |
+
if os.path.exists(DATA_FILE):
|
13 |
+
with open(DATA_FILE, "r", encoding="utf-8") as f:
|
14 |
+
return json.load(f)
|
15 |
+
return {"tokens": [], "phrases": {}}
|
16 |
+
|
17 |
+
def save_data(data):
|
18 |
+
"""Salva i dati (token e frasi) nel file JSON."""
|
19 |
+
with open(DATA_FILE, "w", encoding="utf-8") as f:
|
20 |
+
json.dump(data, f, indent=4)
|
21 |
+
|
22 |
+
data = load_data()
|
23 |
+
|
24 |
+
def save_token_and_phrase(token, phrase):
|
25 |
+
if phrase not in data["phrases"]:
|
26 |
+
data["phrases"][phrase] = token
|
27 |
+
save_data(data)
|
28 |
+
|
29 |
+
def get_valid_predictions(sentence, max_attempts=3, top_k=5):
|
30 |
+
"""Verifica se la frase è già salvata e usa il token corrispondente."""
|
31 |
+
if sentence in data["phrases"]:
|
32 |
+
return [{"token_str": data["phrases"][sentence], "score": 1.0, "sequence": sentence.replace("[MASK]", data["phrases"][sentence])}]
|
33 |
+
|
34 |
+
attempt = 0
|
35 |
+
filtered_predictions = []
|
36 |
+
while attempt < max_attempts:
|
37 |
+
predictions = fill_mask_roberta(sentence, top_k=top_k)
|
38 |
+
filtered_predictions = [
|
39 |
+
pred for pred in predictions if pred["token_str"] not in punctuation_marks
|
40 |
+
]
|
41 |
+
if filtered_predictions:
|
42 |
+
break
|
43 |
+
attempt += 1
|
44 |
+
return filtered_predictions
|
45 |
+
|
46 |
+
# UI per l'inserimento del token e delle frasi
|
47 |
+
st.sidebar.header("Gestione Token e Frasi")
|
48 |
+
token_input = st.sidebar.text_input("Inserisci il token:")
|
49 |
+
phrase_input = st.sidebar.text_area("Inserisci la frase:")
|
50 |
+
if st.sidebar.button("Salva Token e Frase"):
|
51 |
+
if token_input and phrase_input:
|
52 |
+
save_token_and_phrase(token_input, phrase_input)
|
53 |
+
st.sidebar.success("Token e frase salvati con successo!")
|
54 |
+
else:
|
55 |
+
st.sidebar.warning("Inserisci sia un token che una frase validi.")
|
56 |
+
|
57 |
+
existing_phrases = data.get("phrases", {})
|
58 |
+
st.sidebar.subheader("Frasi salvate:")
|
59 |
+
st.sidebar.write("\n".join(existing_phrases.keys()) if existing_phrases else "Nessuna frase salvata.")
|
60 |
+
|
61 |
+
_original_input = builtins.input
|
62 |
+
def _always_yes(prompt=""):
|
63 |
+
print(prompt, "Y") # per far vedere a log che abbiamo risposto 'Y'
|
64 |
+
return "Y"
|
65 |
+
|
66 |
+
builtins.input = _always_yes
|
67 |
+
|
68 |
+
corpus_downloader = FetchCorpus(language="lat")
|
69 |
+
corpus_downloader.import_corpus("lat_models_cltk")
|
70 |
+
|
71 |
+
try:
|
72 |
+
from cltk import NLP
|
73 |
+
nlp_lat = NLP(language="lat")
|
74 |
+
except ImportError:
|
75 |
+
nlp_lat = None
|
76 |
+
|
77 |
+
if "input_text_value" not in st.session_state:
|
78 |
+
st.session_state["input_text_value"] = "Lorem ipsum dolor sit amet, [MASK] adipiscing elit."
|
79 |
+
|
80 |
+
tokenizer_roberta = AutoTokenizer.from_pretrained("Cicciokr/Roberta-Base-Latin-Uncased")
|
81 |
+
model_roberta = AutoModelForMaskedLM.from_pretrained("Cicciokr/Roberta-Base-Latin-Uncased")
|
82 |
+
fill_mask_roberta = pipeline("fill-mask", model=model_roberta, tokenizer=tokenizer_roberta)
|
83 |
+
|
84 |
+
punctuation_marks = {".", ",", ";", ":", "!", "?"}
|
85 |
+
|
86 |
+
input_text = st.text_area(
|
87 |
+
label="Testo:",
|
88 |
+
height=150,
|
89 |
+
key="input_text_value"
|
90 |
+
)
|
91 |
+
|
92 |
+
if input_text:
|
93 |
+
input_text_roberta = input_text.replace("[MASK]", "<mask>")
|
94 |
+
predictions_roberta = get_valid_predictions(input_text_roberta)
|
95 |
+
st.subheader("Risultati delle previsioni:")
|
96 |
+
for pred in predictions_roberta:
|
97 |
+
st.write(f" Token: {pred['token_str']}")
|
98 |
+
st.write(f" Probabilità: {pred['score']:.4f}")
|
99 |
+
st.write(f" Sequence: {pred['sequence']}")
|
100 |
+
st.write("---")
|
101 |
+
if nlp_lat is not None:
|
102 |
+
st.subheader("Analisi Morfologica con CLTK")
|
103 |
+
for pred in predictions_roberta:
|
104 |
+
doc = nlp_lat(pred['token_str'])
|
105 |
+
st.write(f"Frase: {pred['token_str']}")
|
106 |
+
for w in doc.words:
|
107 |
+
st.write(
|
108 |
+
f"- **Token**: {w.string}\n"
|
109 |
+
f" - Lemma: {w.lemma}\n"
|
110 |
+
f" - UPOS: {w.upos}\n"
|
111 |
+
f" - Morph: {w.features}\n"
|
112 |
+
)
|
113 |
+
st.write("---")
|
114 |
+
else:
|
115 |
+
st.warning("CLTK non installato. Esegui 'pip install cltk' per abilitare l'analisi.")
|