Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -23,15 +23,15 @@ input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] a
|
|
23 |
# Model based on BERT
|
24 |
#modelname = "./models/latin_bert/"
|
25 |
#Hugging face LuisAVasquez/simple-latin-bert-uncased
|
26 |
-
modelname_lv = "LuisAVasquez/simple-latin-bert-uncased"
|
27 |
#https://github.com/dbamman/latin-bert
|
28 |
modelname = "./models/bert-base-latin-uncased"
|
29 |
|
30 |
|
31 |
|
32 |
-
tokenizer_roberta = AutoTokenizer.from_pretrained("pstroe/roberta-base-latin-cased3")
|
33 |
-
model_roberta = AutoModelForMaskedLM.from_pretrained("pstroe/roberta-base-latin-cased3")
|
34 |
-
fill_mask_roberta = pipeline("fill-mask", model=model_roberta, tokenizer=tokenizer_roberta)
|
35 |
|
36 |
tokenizer_robertaclasscat = AutoTokenizer.from_pretrained("ClassCat/roberta-base-latin-v2")
|
37 |
model_robertaclasscat = AutoModelForMaskedLM.from_pretrained("ClassCat/roberta-base-latin-v2")
|
@@ -41,22 +41,22 @@ tokenizer = AutoTokenizer.from_pretrained(modelname)
|
|
41 |
model = AutoModelForMaskedLM.from_pretrained(modelname)
|
42 |
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
43 |
|
44 |
-
tokenizer_lv = AutoTokenizer.from_pretrained(modelname_lv)
|
45 |
-
model_lv = AutoModelForMaskedLM.from_pretrained(modelname_lv)
|
46 |
-
fill_mask_lv = pipeline("fill-mask", model=model_lv, tokenizer=tokenizer_lv)
|
47 |
|
48 |
if input_text:
|
49 |
predictions = fill_mask(input_text)
|
50 |
-
st.subheader("Risultati delle previsioni con Bert
|
51 |
for pred in predictions:
|
52 |
st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
|
53 |
-
input_text_roberta = input_text.replace("[MASK]", "<mask>")
|
54 |
-
predictions_roberta = fill_mask_roberta(input_text_roberta)
|
55 |
-
st.subheader("Risultati delle previsioni con Roberta Base Latin Cased 3:")
|
56 |
-
for pred_roberta in predictions_roberta:
|
57 |
-
|
58 |
predictions_robertaclasscat = fill_mask_robertaclasscat(input_text_roberta)
|
59 |
-
st.subheader("Risultati delle previsioni con Roberta
|
60 |
for pred_robertaclasscat in predictions_robertaclasscat:
|
61 |
st.write(f"**Parola**: {pred_robertaclasscat['token_str']}, **Probabilità**: {pred_robertaclasscat['score']:.4f}, **Sequence**: {pred_robertaclasscat['sequence']}")
|
62 |
|
|
|
23 |
# Model based on BERT
|
24 |
#modelname = "./models/latin_bert/"
|
25 |
#Hugging face LuisAVasquez/simple-latin-bert-uncased
|
26 |
+
#modelname_lv = "LuisAVasquez/simple-latin-bert-uncased"
|
27 |
#https://github.com/dbamman/latin-bert
|
28 |
modelname = "./models/bert-base-latin-uncased"
|
29 |
|
30 |
|
31 |
|
32 |
+
#tokenizer_roberta = AutoTokenizer.from_pretrained("pstroe/roberta-base-latin-cased3")
|
33 |
+
#model_roberta = AutoModelForMaskedLM.from_pretrained("pstroe/roberta-base-latin-cased3")
|
34 |
+
#fill_mask_roberta = pipeline("fill-mask", model=model_roberta, tokenizer=tokenizer_roberta)
|
35 |
|
36 |
tokenizer_robertaclasscat = AutoTokenizer.from_pretrained("ClassCat/roberta-base-latin-v2")
|
37 |
model_robertaclasscat = AutoModelForMaskedLM.from_pretrained("ClassCat/roberta-base-latin-v2")
|
|
|
41 |
model = AutoModelForMaskedLM.from_pretrained(modelname)
|
42 |
fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
|
43 |
|
44 |
+
#tokenizer_lv = AutoTokenizer.from_pretrained(modelname_lv)
|
45 |
+
#model_lv = AutoModelForMaskedLM.from_pretrained(modelname_lv)
|
46 |
+
#fill_mask_lv = pipeline("fill-mask", model=model_lv, tokenizer=tokenizer_lv)
|
47 |
|
48 |
if input_text:
|
49 |
predictions = fill_mask(input_text)
|
50 |
+
st.subheader("Risultati delle previsioni con Bert:")
|
51 |
for pred in predictions:
|
52 |
st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
|
53 |
+
#input_text_roberta = input_text.replace("[MASK]", "<mask>")
|
54 |
+
#predictions_roberta = fill_mask_roberta(input_text_roberta)
|
55 |
+
#st.subheader("Risultati delle previsioni con Roberta Base Latin Cased 3:")
|
56 |
+
#for pred_roberta in predictions_roberta:
|
57 |
+
# st.write(f"**Parola**: {pred_roberta['token_str']}, **Probabilità**: {pred_roberta['score']:.4f}, **Sequence**: {pred_roberta['sequence']}")
|
58 |
predictions_robertaclasscat = fill_mask_robertaclasscat(input_text_roberta)
|
59 |
+
st.subheader("Risultati delle previsioni con Roberta:")
|
60 |
for pred_robertaclasscat in predictions_robertaclasscat:
|
61 |
st.write(f"**Parola**: {pred_robertaclasscat['token_str']}, **Probabilità**: {pred_robertaclasscat['score']:.4f}, **Sequence**: {pred_robertaclasscat['sequence']}")
|
62 |
|