Cicciokr commited on
Commit
d28466c
·
verified ·
1 Parent(s): 1685b4b

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -14
app.py CHANGED
@@ -23,15 +23,15 @@ input_text = st.text_input("Testo:", value="Lorem ipsum dolor sit amet, [MASK] a
23
  # Model based on BERT
24
  #modelname = "./models/latin_bert/"
25
  #Hugging face LuisAVasquez/simple-latin-bert-uncased
26
- modelname_lv = "LuisAVasquez/simple-latin-bert-uncased"
27
  #https://github.com/dbamman/latin-bert
28
  modelname = "./models/bert-base-latin-uncased"
29
 
30
 
31
 
32
- tokenizer_roberta = AutoTokenizer.from_pretrained("pstroe/roberta-base-latin-cased3")
33
- model_roberta = AutoModelForMaskedLM.from_pretrained("pstroe/roberta-base-latin-cased3")
34
- fill_mask_roberta = pipeline("fill-mask", model=model_roberta, tokenizer=tokenizer_roberta)
35
 
36
  tokenizer_robertaclasscat = AutoTokenizer.from_pretrained("ClassCat/roberta-base-latin-v2")
37
  model_robertaclasscat = AutoModelForMaskedLM.from_pretrained("ClassCat/roberta-base-latin-v2")
@@ -41,22 +41,22 @@ tokenizer = AutoTokenizer.from_pretrained(modelname)
41
  model = AutoModelForMaskedLM.from_pretrained(modelname)
42
  fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
43
 
44
- tokenizer_lv = AutoTokenizer.from_pretrained(modelname_lv)
45
- model_lv = AutoModelForMaskedLM.from_pretrained(modelname_lv)
46
- fill_mask_lv = pipeline("fill-mask", model=model_lv, tokenizer=tokenizer_lv)
47
 
48
  if input_text:
49
  predictions = fill_mask(input_text)
50
- st.subheader("Risultati delle previsioni con Bert Base Latin Uncased:")
51
  for pred in predictions:
52
  st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
53
- input_text_roberta = input_text.replace("[MASK]", "<mask>")
54
- predictions_roberta = fill_mask_roberta(input_text_roberta)
55
- st.subheader("Risultati delle previsioni con Roberta Base Latin Cased 3:")
56
- for pred_roberta in predictions_roberta:
57
- st.write(f"**Parola**: {pred_roberta['token_str']}, **Probabilità**: {pred_roberta['score']:.4f}, **Sequence**: {pred_roberta['sequence']}")
58
  predictions_robertaclasscat = fill_mask_robertaclasscat(input_text_roberta)
59
- st.subheader("Risultati delle previsioni con Roberta Base Latin ClassCat V2:")
60
  for pred_robertaclasscat in predictions_robertaclasscat:
61
  st.write(f"**Parola**: {pred_robertaclasscat['token_str']}, **Probabilità**: {pred_robertaclasscat['score']:.4f}, **Sequence**: {pred_robertaclasscat['sequence']}")
62
 
 
23
  # Model based on BERT
24
  #modelname = "./models/latin_bert/"
25
  #Hugging face LuisAVasquez/simple-latin-bert-uncased
26
+ #modelname_lv = "LuisAVasquez/simple-latin-bert-uncased"
27
  #https://github.com/dbamman/latin-bert
28
  modelname = "./models/bert-base-latin-uncased"
29
 
30
 
31
 
32
+ #tokenizer_roberta = AutoTokenizer.from_pretrained("pstroe/roberta-base-latin-cased3")
33
+ #model_roberta = AutoModelForMaskedLM.from_pretrained("pstroe/roberta-base-latin-cased3")
34
+ #fill_mask_roberta = pipeline("fill-mask", model=model_roberta, tokenizer=tokenizer_roberta)
35
 
36
  tokenizer_robertaclasscat = AutoTokenizer.from_pretrained("ClassCat/roberta-base-latin-v2")
37
  model_robertaclasscat = AutoModelForMaskedLM.from_pretrained("ClassCat/roberta-base-latin-v2")
 
41
  model = AutoModelForMaskedLM.from_pretrained(modelname)
42
  fill_mask = pipeline("fill-mask", model=model, tokenizer=tokenizer)
43
 
44
+ #tokenizer_lv = AutoTokenizer.from_pretrained(modelname_lv)
45
+ #model_lv = AutoModelForMaskedLM.from_pretrained(modelname_lv)
46
+ #fill_mask_lv = pipeline("fill-mask", model=model_lv, tokenizer=tokenizer_lv)
47
 
48
  if input_text:
49
  predictions = fill_mask(input_text)
50
+ st.subheader("Risultati delle previsioni con Bert:")
51
  for pred in predictions:
52
  st.write(f"**Parola**: {pred['token_str']}, **Probabilità**: {pred['score']:.4f}, **Sequence**: {pred['sequence']}")
53
+ #input_text_roberta = input_text.replace("[MASK]", "<mask>")
54
+ #predictions_roberta = fill_mask_roberta(input_text_roberta)
55
+ #st.subheader("Risultati delle previsioni con Roberta Base Latin Cased 3:")
56
+ #for pred_roberta in predictions_roberta:
57
+ # st.write(f"**Parola**: {pred_roberta['token_str']}, **Probabilità**: {pred_roberta['score']:.4f}, **Sequence**: {pred_roberta['sequence']}")
58
  predictions_robertaclasscat = fill_mask_robertaclasscat(input_text_roberta)
59
+ st.subheader("Risultati delle previsioni con Roberta:")
60
  for pred_robertaclasscat in predictions_robertaclasscat:
61
  st.write(f"**Parola**: {pred_robertaclasscat['token_str']}, **Probabilità**: {pred_robertaclasscat['score']:.4f}, **Sequence**: {pred_robertaclasscat['sequence']}")
62