File size: 5,581 Bytes
d960e2d
 
 
 
 
030fa5f
d960e2d
 
030fa5f
d960e2d
 
 
 
 
 
 
030fa5f
 
d960e2d
 
 
030fa5f
 
d960e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
030fa5f
d960e2d
 
 
 
 
 
 
030fa5f
d960e2d
030fa5f
 
 
 
 
d960e2d
 
 
 
 
 
 
 
 
 
 
 
030fa5f
d960e2d
 
 
 
 
030fa5f
 
 
 
d960e2d
 
 
 
 
 
3de3832
d960e2d
 
030fa5f
 
d960e2d
 
 
030fa5f
 
d960e2d
030fa5f
d960e2d
 
 
030fa5f
 
 
 
 
 
 
 
 
 
d960e2d
 
 
 
 
030fa5f
 
d960e2d
030fa5f
 
 
 
 
 
 
d960e2d
 
 
 
 
 
3de3832
 
 
 
 
 
d960e2d
 
 
 
 
 
030fa5f
 
 
 
d960e2d
030fa5f
 
d960e2d
030fa5f
 
 
 
d960e2d
 
 
030fa5f
 
d960e2d
 
030fa5f
 
 
 
d960e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
try:
    from .arch_util import EBlock
    from .arch_util_freq import EBlock_freq
except:
    from arch_util import EBlock
    from arch_util_freq import EBlock_freq


class Network(nn.Module):
    
    def __init__(self, img_channel=3, 
                 width=16, 
                 middle_blk_num_enc=1,
                 middle_blk_num_dec=1, 
                 enc_blk_nums=[], 
                 dec_blk_nums=[],  
                 dilations = [1], 
                 extra_depth_wise = False,
                 ksize = 5):
        super(Network, self).__init__()
        
        self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
                                bias=True)
        self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
                              bias=True)

        self.encoders = nn.ModuleList()
        self.decoders = nn.ModuleList()
        self.middle_blks = nn.ModuleList()
        self.ups = nn.ModuleList()
        self.downs = nn.ModuleList()

        chan = width
        for num in enc_blk_nums:
            self.encoders.append(
                nn.Sequential(
                    *[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)]
                )
            )
            self.downs.append(
                nn.Conv2d(chan, 2*chan, 2, 2)
            )
            chan = chan * 2

        self.middle_blks_enc = \
            nn.Sequential(
                *[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_enc)]
            )
        self.middle_blks_dec = \
            nn.Sequential(
                *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_dec)]
            )

        for num in dec_blk_nums:
            self.ups.append(
                nn.Sequential(
                    nn.Conv2d(chan, chan * 2, 1, bias=False),
                    nn.PixelShuffle(2)
                )
            )
            chan = chan // 2
            self.decoders.append(
                nn.Sequential(
                    *[EBlock(chan,dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)]
                )
            )

        self.padder_size = 2 ** len(self.encoders)        
        
        # self.facs = nn.ModuleList([nn.Identity(), nn.Identity(),
        #                           nn.Identity(),
        #                           nn.Identity())
        # self.kconv_deblur = KernelConv2D(ksize=ksize, act = True)
   
        
    def forward(self, input):

        _, _, H, W = input.shape

        input = self.check_image_size(input)
        x = self.intro(input)
        
        # encs = []
        facs = []
        # i = 0
        for encoder, down in zip(self.encoders, self.downs):
            x = encoder(x)
            # x_fac = fac(x)
            facs.append(x)
            # print(i, x.shape)
            # encs.append(x)
            x = down(x)
            # i += 1

        # we apply the encoder transforms
        x_light = self.middle_blks_enc(x)
        # calculate the fac at this level
        # x_fac = self.facs[-1](x)
        # facs.append(x_fac)
        # apply the decoder transforms
        x = self.middle_blks_dec(x_light)
        # apply the fac transform over this step
        x = x + x_light

        # print('3', x.shape)
        # apply the mask
        # x = x * mask
        
        # x = self.recon_trunk_light(x)
        i = 0
        for decoder, up, fac_skip in zip(self.decoders, self.ups, facs[::-1]):
            x = up(x)
            if i == 2: # in the toppest decoder step
                x = x + fac_skip
                x = decoder(x)
            else:
                x = x + fac_skip
                x = decoder(x)
            i+=1

        x = self.ending(x)
        x = x + input
        
        return x[:, :, :H, :W]

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
        mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0)
        return x

if __name__ == '__main__':
    
    img_channel = 3
    width = 32

    # enc_blks = [1, 1, 1, 3]
    # middle_blk_num = 3
    # dec_blks = [2, 1, 1, 1]
    
    enc_blks = [1, 2, 3]
    middle_blk_num_enc = 2
    middle_blk_num_dec = 2
    dec_blks = [3, 1, 1]
    residual_layers = None
    dilations = [1, 4, 9]
    extra_depth_wise = True
    ksize = 5
    
    net = Network(img_channel=img_channel, 
                  width=width, 
                  middle_blk_num_enc=middle_blk_num_enc,
                  middle_blk_num_dec= middle_blk_num_dec,
                  enc_blk_nums=enc_blks, 
                  dec_blk_nums=dec_blks,
                  dilations = dilations,
                  extra_depth_wise = extra_depth_wise,
                  ksize = ksize)
    
    # NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
    #                   enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)

    inp_shape = (3, 256, 256)

    from ptflops import get_model_complexity_info

    macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)

    print(macs, params)    
    inp = torch.randn(1, 3, 256, 256)
    out = net(inp)