Spaces:
Running
Running
File size: 5,581 Bytes
d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 3de3832 d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 3de3832 d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d 030fa5f d960e2d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
try:
from .arch_util import EBlock
from .arch_util_freq import EBlock_freq
except:
from arch_util import EBlock
from arch_util_freq import EBlock_freq
class Network(nn.Module):
def __init__(self, img_channel=3,
width=16,
middle_blk_num_enc=1,
middle_blk_num_dec=1,
enc_blk_nums=[],
dec_blk_nums=[],
dilations = [1],
extra_depth_wise = False,
ksize = 5):
super(Network, self).__init__()
self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
bias=True)
self.encoders = nn.ModuleList()
self.decoders = nn.ModuleList()
self.middle_blks = nn.ModuleList()
self.ups = nn.ModuleList()
self.downs = nn.ModuleList()
chan = width
for num in enc_blk_nums:
self.encoders.append(
nn.Sequential(
*[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)]
)
)
self.downs.append(
nn.Conv2d(chan, 2*chan, 2, 2)
)
chan = chan * 2
self.middle_blks_enc = \
nn.Sequential(
*[EBlock_freq(chan, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_enc)]
)
self.middle_blks_dec = \
nn.Sequential(
*[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num_dec)]
)
for num in dec_blk_nums:
self.ups.append(
nn.Sequential(
nn.Conv2d(chan, chan * 2, 1, bias=False),
nn.PixelShuffle(2)
)
)
chan = chan // 2
self.decoders.append(
nn.Sequential(
*[EBlock(chan,dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)]
)
)
self.padder_size = 2 ** len(self.encoders)
# self.facs = nn.ModuleList([nn.Identity(), nn.Identity(),
# nn.Identity(),
# nn.Identity())
# self.kconv_deblur = KernelConv2D(ksize=ksize, act = True)
def forward(self, input):
_, _, H, W = input.shape
input = self.check_image_size(input)
x = self.intro(input)
# encs = []
facs = []
# i = 0
for encoder, down in zip(self.encoders, self.downs):
x = encoder(x)
# x_fac = fac(x)
facs.append(x)
# print(i, x.shape)
# encs.append(x)
x = down(x)
# i += 1
# we apply the encoder transforms
x_light = self.middle_blks_enc(x)
# calculate the fac at this level
# x_fac = self.facs[-1](x)
# facs.append(x_fac)
# apply the decoder transforms
x = self.middle_blks_dec(x_light)
# apply the fac transform over this step
x = x + x_light
# print('3', x.shape)
# apply the mask
# x = x * mask
# x = self.recon_trunk_light(x)
i = 0
for decoder, up, fac_skip in zip(self.decoders, self.ups, facs[::-1]):
x = up(x)
if i == 2: # in the toppest decoder step
x = x + fac_skip
x = decoder(x)
else:
x = x + fac_skip
x = decoder(x)
i+=1
x = self.ending(x)
x = x + input
return x[:, :, :H, :W]
def check_image_size(self, x):
_, _, h, w = x.size()
mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0)
return x
if __name__ == '__main__':
img_channel = 3
width = 32
# enc_blks = [1, 1, 1, 3]
# middle_blk_num = 3
# dec_blks = [2, 1, 1, 1]
enc_blks = [1, 2, 3]
middle_blk_num_enc = 2
middle_blk_num_dec = 2
dec_blks = [3, 1, 1]
residual_layers = None
dilations = [1, 4, 9]
extra_depth_wise = True
ksize = 5
net = Network(img_channel=img_channel,
width=width,
middle_blk_num_enc=middle_blk_num_enc,
middle_blk_num_dec= middle_blk_num_dec,
enc_blk_nums=enc_blks,
dec_blk_nums=dec_blks,
dilations = dilations,
extra_depth_wise = extra_depth_wise,
ksize = ksize)
# NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
# enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
inp_shape = (3, 256, 256)
from ptflops import get_model_complexity_info
macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)
print(macs, params)
inp = torch.randn(1, 3, 256, 256)
out = net(inp)
|