File size: 8,513 Bytes
d960e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F

try:
    from .nafnet_utils.arch_util import LayerNorm2d
    from .nafnet_utils.arch_model import SimpleGate
except:
    from nafnet_utils.arch_util import LayerNorm2d
    from nafnet_utils.arch_model import SimpleGate

'''
https://github.com/wangchx67/FourLLIE.git
'''

def initialize_weights(net_l, scale=1):
    if not isinstance(net_l, list):
        net_l = [net_l]
    for net in net_l:
        for m in net.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale  # for residual block
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias.data, 0.0)


def make_layer(block, n_layers):
    layers = []
    for _ in range(n_layers):
        layers.append(block())
    return nn.Sequential(*layers)


class ResidualBlock_noBN(nn.Module):
    '''Residual block w/o BN
    ---Conv-ReLU-Conv-+-
     |________________|
    '''

    def __init__(self, nf=64):
        super(ResidualBlock_noBN, self).__init__()
        self.conv1 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)
        self.conv2 = nn.Conv2d(nf, nf, 3, 1, 1, bias=True)

        # initialization
        initialize_weights([self.conv1, self.conv2], 0.1)

    def forward(self, x):
        identity = x
        out = F.relu(self.conv1(x), inplace=True)
        out = self.conv2(out)
        return identity + out

class SpaBlock(nn.Module):
    def __init__(self, nc):
        super(SpaBlock, self).__init__()
        self.block = nn.Sequential(
            nn.Conv2d(nc,nc,3,1,1),
            nn.LeakyReLU(0.1,inplace=True),
            nn.Conv2d(nc, nc, 3, 1, 1),
            nn.LeakyReLU(0.1, inplace=True))

    def forward(self, x):
        return x+self.block(x)

class FreBlock(nn.Module):
    def __init__(self, nc):
        super(FreBlock, self).__init__()
        self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
        self.process1 = nn.Sequential(
            nn.Conv2d(nc, nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(nc, nc, 1, 1, 0))
        self.process2 = nn.Sequential(
            nn.Conv2d(nc, nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(nc, nc, 1, 1, 0))

    def forward(self, x):
        _, _, H, W = x.shape
        x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
        mag = torch.abs(x_freq)
        pha = torch.angle(x_freq)
        mag = self.process1(mag)
        pha = self.process2(pha)
        real = mag * torch.cos(pha)
        imag = mag * torch.sin(pha)
        x_out = torch.complex(real, imag)
        x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')

        return x_out+x

class ProcessBlock(nn.Module):
    def __init__(self, in_nc, spatial = True):
        super(ProcessBlock,self).__init__()
        self.spatial = spatial
        self.spatial_process = SpaBlock(in_nc) if spatial else nn.Identity()
        self.frequency_process = FreBlock(in_nc)
        self.cat = nn.Conv2d(2*in_nc,in_nc,1,1,0) if spatial else nn.Conv2d(in_nc,in_nc,1,1,0)

    def forward(self, x):
        xori = x
        x_freq = self.frequency_process(x)
        x_spatial = self.spatial_process(x)
        xcat = torch.cat([x_spatial,x_freq],1)
        x_out = self.cat(xcat) if self.spatial else self.cat(x_freq)

        return x_out+xori

class Attention_Light(nn.Module):
    
    def __init__(self, img_channels = 3, width = 16, spatial = False):
        super(Attention_Light, self).__init__()
        self.block = nn.Sequential(
                nn.Conv2d(in_channels = img_channels, out_channels = width//2, kernel_size = 1, padding = 0, stride = 1, groups = 1, bias = True),
                ProcessBlock(in_nc = width //2, spatial = spatial),
                nn.Conv2d(in_channels = width//2, out_channels = width, kernel_size = 1, padding = 0, stride = 1, groups = 1, bias = True),
                ProcessBlock(in_nc = width, spatial = spatial),
                nn.Conv2d(in_channels = width, out_channels = width, kernel_size = 1, padding = 0, stride = 1, groups = 1, bias = True),
                ProcessBlock(in_nc=width, spatial = spatial),
                nn.Sigmoid()
                    )
    def forward(self, input):
        return self.block(input)

class Branch(nn.Module):
    '''
    Branch that lasts lonly the dilated convolutions
    '''
    def __init__(self, c, DW_Expand, dilation = 1, extra_depth_wise = False):
        super().__init__()
        self.dw_channel = DW_Expand * c 
        self.branch = nn.Sequential(
                       nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity(), #optional extra dw
                       nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1),
                       nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation, stride=1, groups=self.dw_channel,
                                            bias=True, dilation = dilation) # the dconv
        )
    def forward(self, input):
        return self.branch(input)
    
class EBlock(nn.Module):
    '''
    Change this block using Branch
    '''
    
    def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations = [1], extra_depth_wise = False):
        super().__init__()
        #we define the 2 branches
        
        self.branches = nn.ModuleList()
        for dilation in dilations:
            self.branches.append(Branch(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise))
            
        assert len(dilations) == len(self.branches)
        self.dw_channel = DW_Expand * c 
        self.sca = nn.Sequential(
                       nn.AdaptiveAvgPool2d(1),
                       nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1,
                       groups=1, bias=True, dilation = 1),  
        )
        self.sg1 = SimpleGate()
        self.sg2 = SimpleGate()
        self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):

        y = inp
        x = self.norm1(inp)
        z = 0
        for branch in self.branches:
            z += branch(x)
        
        z = self.sg1(z)
        x = self.sca(z) * z
        x = self.conv3(x)
        y = inp + self.beta * x
        #second step
        x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
        x = self.sg2(x)  # size [B, C, H, W]
        x = self.conv5(x) # size [B, C, H, W]

        return y + x * self.gamma

#----------------------------------------------------------------------------------------------
if __name__ == '__main__':
    
    img_channel = 3
    width = 32

    enc_blks = [1, 2, 3]
    middle_blk_num = 3
    dec_blks = [3, 1, 1]
    dilations = [1, 4, 9]
    extra_depth_wise = False
    
    # net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
    #                   enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
    net  = EBlock(c = img_channel, 
                            dilations = dilations,
                            extra_depth_wise=extra_depth_wise)

    inp_shape = (3, 256, 256)

    from ptflops import get_model_complexity_info

    macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)


    print(macs, params)