File size: 5,472 Bytes
d960e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F

try:
    from .nafnet_utils.arch_util import LayerNorm2d
    from .nafnet_utils.arch_model import SimpleGate
except:
    from nafnet_utils.arch_util import LayerNorm2d
    from nafnet_utils.arch_model import SimpleGate

'''
https://github.com/wangchx67/FourLLIE.git
'''

def initialize_weights(net_l, scale=1):
    if not isinstance(net_l, list):
        net_l = [net_l]
    for net in net_l:
        for m in net.modules():
            if isinstance(m, nn.Conv2d):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale  # for residual block
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.Linear):
                init.kaiming_normal_(m.weight, a=0, mode='fan_in')
                m.weight.data *= scale
                if m.bias is not None:
                    m.bias.data.zero_()
            elif isinstance(m, nn.BatchNorm2d):
                init.constant_(m.weight, 1)
                init.constant_(m.bias.data, 0.0)

class FreNAFBlock(nn.Module):
    
    def __init__(self, nc, expand = 2):
        super(FreNAFBlock, self).__init__()
        self.process1 = nn.Sequential(
            nn.Conv2d(nc, expand * nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(expand * nc, nc, 1, 1, 0))

    def forward(self, x):
        _, _, H, W = x.shape
        x_freq = torch.fft.rfft2(x, norm='backward')
        mag = torch.abs(x_freq)
        pha = torch.angle(x_freq)
        mag = self.process1(mag)
        real = mag * torch.cos(pha)
        imag = mag * torch.sin(pha)
        x_out = torch.complex(real, imag)
        x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
        return x_out

# ------------------------------------------------------------------------------------------------

class Branch(nn.Module):
    '''
    Branch that lasts lonly the dilated convolutions
    '''
    def __init__(self, c, DW_Expand, dilation = 1, extra_depth_wise = False):
        super().__init__()
        self.dw_channel = DW_Expand * c 
        self.branch = nn.Sequential(
                       nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity(), #optional extra dw
                       nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1),
                       nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation, stride=1, groups=self.dw_channel,
                                            bias=True, dilation = dilation) # the dconv
        )
    def forward(self, input):
        return self.branch(input)
    
class EBlock_freq(nn.Module):
    '''
    Change this block using Branch
    '''
    
    def __init__(self, c, DW_Expand=2, dilations = [1], extra_depth_wise = False):
        super().__init__()
        #we define the 2 branches
        
        self.branches = nn.ModuleList()
        for dilation in dilations:
            self.branches.append(Branch(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise))
            
        assert len(dilations) == len(self.branches)
        self.dw_channel = DW_Expand * c 
        self.sca = nn.Sequential(
                       nn.AdaptiveAvgPool2d(1),
                       nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1,
                       groups=1, bias=True, dilation = 1),  
        )
        self.sg1 = SimpleGate()
        self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
        # second step

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)
        self.freq = FreNAFBlock(nc = c, expand=2)
        self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):

        y = inp
        x = self.norm1(inp)
        z = 0
        for branch in self.branches:
            z += branch(x)
        
        z = self.sg1(z)
        x = self.sca(z) * z
        x = self.conv3(x)
        y = inp + self.beta * x
        #second step
        x_step2 = self.norm2(y) # size [B, 2*C, H, W]
        x_freq = self.freq(x_step2) # size [B, C, H, W]
        x = y * x_freq 
        
        return y + x * self.gamma

#----------------------------------------------------------------------------------------------
if __name__ == '__main__':
    
    img_channel = 128
    width = 32

    enc_blks = [1, 2, 3]
    middle_blk_num = 3
    dec_blks = [3, 1, 1]
    dilations = [1, 4, 9]
    extra_depth_wise = True
    
    # net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
    #                   enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
    net  = EBlock(c = img_channel, 
                            dilations = dilations,
                            extra_depth_wise=extra_depth_wise)

    inp_shape = (128, 32, 32)

    from ptflops import get_model_complexity_info

    macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)


    print(macs, params)