File size: 4,422 Bytes
d960e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
import torch
import torch.nn as nn
import torch.nn.functional as F
import functools
try:
    from .arch_util import EBlock, Attention_Light
    from .arch_util_freq import EBlock_freq
except:
    from arch_util import EBlock, Attention_Light
    from arch_util_freq import EBlock_freq


class Network(nn.Module):
    
    def __init__(self, img_channel=3, 
                 width=16, 
                 middle_blk_num=1, 
                 enc_blk_nums=[], 
                 dec_blk_nums=[],  
                 dilations = [1], 
                 extra_depth_wise = False):
        super(Network, self).__init__()
        
        self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
                                bias=True)
        self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
                              bias=True)

        self.encoders = nn.ModuleList()
        self.decoders = nn.ModuleList()
        self.middle_blks = nn.ModuleList()
        self.ups = nn.ModuleList()
        self.downs = nn.ModuleList()

        chan = width
        for num in enc_blk_nums:
            self.encoders.append(
                nn.Sequential(
                    *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(num)]
                )
            )
            self.downs.append(
                nn.Conv2d(chan, 2*chan, 2, 2)
            )
            chan = chan * 2

        self.middle_blks = \
            nn.Sequential(
                *[EBlock(chan, dilations = dilations, extra_depth_wise=extra_depth_wise) for _ in range(middle_blk_num)]
            )

        for num in dec_blk_nums:
            self.ups.append(
                nn.Sequential(
                    nn.Conv2d(chan, chan * 2, 1, bias=False),
                    nn.PixelShuffle(2)
                )
            )
            chan = chan // 2
            self.decoders.append(
                nn.Sequential(
                    *[EBlock(chan, extra_depth_wise=extra_depth_wise) for _ in range(num)]
                )
            )

        self.padder_size = 2 ** len(self.encoders)        
        
        #define the attention layers 
        
        # self.recon_trunk_light = nn.Sequential(*[FBlock(c = chan * self.padder_size,
        #                                         DW_Expand=2, FFN_Expand=2, dilations = dilations, 
        #                                         extra_depth_wise = False) for i in range(residual_layers)])

        # ResidualBlock_noBN_f = functools.partial(ResidualBlock_noBN, nf = width * self.padder_size)
        # self.recon_trunk_light = make_layer(ResidualBlock_noBN_f, residual_layers)
        
   
        
    def forward(self, input):

        _, _, H, W = input.shape

        x = self.intro(input)
        
        encs = []
        # i = 0
        for encoder, down in zip(self.encoders, self.downs):
            x = encoder(x)
            # print(i, x.shape)
            encs.append(x)
            x = down(x)
            # i += 1

        x = self.middle_blks(x)
        # print('3', x.shape)
        # apply the mask
        # x = x * mask
        
        # x = self.recon_trunk_light(x)
        
        for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
            x = up(x)
            x = x + enc_skip
            x = decoder(x)

        x = self.ending(x)
        x = x + input
        
        return x[:, :, :H, :W]


if __name__ == '__main__':
    
    img_channel = 3
    width = 32

    enc_blks = [1, 2, 3]
    middle_blk_num = 3
    dec_blks = [3, 1, 1]
    residual_layers = 2
    dilations = [1, 4]
    
    net = Network(img_channel=img_channel, 
                  width=width, 
                  middle_blk_num=middle_blk_num,
                  enc_blk_nums=enc_blks, 
                  dec_blk_nums=dec_blks,
                  dilations = dilations)

    # NAF = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
    #                   enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)

    inp_shape = (3, 256, 256)

    from ptflops import get_model_complexity_info

    macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)

    print(macs, params)    
    inp = torch.randn(1, 3, 256, 256)
    out = net(inp)