File size: 4,705 Bytes
d960e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8dc35d7
d960e2d
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F

try:
    from .nafnet_utils.arch_util import LayerNorm2d
    from .nafnet_utils.arch_model import SimpleGate
except:
    from nafnet_utils.arch_util import LayerNorm2d
    from nafnet_utils.arch_model import SimpleGate

'''
https://github.com/wangchx67/FourLLIE.git
'''

class FreNAFBlock(nn.Module):
    
    def __init__(self, nc, expand = 2):
        super(FreNAFBlock, self).__init__()
        self.process1 = nn.Sequential(
            nn.Conv2d(nc, expand * nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(expand * nc, nc, 1, 1, 0))

    def forward(self, x):
        _, _, H, W = x.shape
        x_freq = torch.fft.rfft2(x, norm='backward')
        mag = torch.abs(x_freq)
        pha = torch.angle(x_freq)
        mag = self.process1(mag)
        real = mag * torch.cos(pha)
        imag = mag * torch.sin(pha)
        x_out = torch.complex(real, imag)
        x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
        return x_out

# ------------------------------------------------------------------------------------------------

class Branch(nn.Module):
    '''
    Branch that lasts lonly the dilated convolutions
    '''
    def __init__(self, c, DW_Expand, dilation = 1, extra_depth_wise = False):
        super().__init__()
        self.dw_channel = DW_Expand * c 
        self.branch = nn.Sequential(
                       nn.Conv2d(c, c, kernel_size=3, padding=1, stride=1, groups=c, bias=True, dilation=1) if extra_depth_wise else nn.Identity(), #optional extra dw
                       nn.Conv2d(in_channels=c, out_channels=self.dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1),
                       nn.Conv2d(in_channels=self.dw_channel, out_channels=self.dw_channel, kernel_size=3, padding=dilation, stride=1, groups=self.dw_channel,
                                            bias=True, dilation = dilation) # the dconv
        )
    def forward(self, input):
        return self.branch(input)
    
class EBlock_freq(nn.Module):
    '''
    Change this block using Branch
    '''
    
    def __init__(self, c, DW_Expand=2, dilations = [1], extra_depth_wise = False):
        super().__init__()
        #we define the 2 branches
        
        self.branches = nn.ModuleList()
        for dilation in dilations:
            self.branches.append(Branch(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise))
            
        assert len(dilations) == len(self.branches)
        self.dw_channel = DW_Expand * c 
        self.sca = nn.Sequential(
                       nn.AdaptiveAvgPool2d(1),
                       nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1,
                       groups=1, bias=True, dilation = 1),  
        )
        self.sg1 = SimpleGate()
        self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
        # second step

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)
        self.freq = FreNAFBlock(nc = c, expand=2)
        self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):

        y = inp
        x = self.norm1(inp)
        z = 0
        for branch in self.branches:
            z += branch(x)
        
        z = self.sg1(z)
        x = self.sca(z) * z
        x = self.conv3(x)
        y = inp + self.beta * x
        #second step
        x_step2 = self.norm2(y) # size [B, 2*C, H, W]
        x_freq = self.freq(x_step2) # size [B, C, H, W]
        x = y * x_freq 
        
        return y + x * self.gamma

#----------------------------------------------------------------------------------------------
if __name__ == '__main__':
    
    img_channel = 128
    width = 32

    enc_blks = [1, 2, 3]
    middle_blk_num = 3
    dec_blks = [3, 1, 1]
    dilations = [1, 4, 9]
    extra_depth_wise = True
    
    # net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
    #                   enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
    net  = EBlock_freq(c = img_channel, 
                            dilations = dilations,
                            extra_depth_wise=extra_depth_wise)

    inp_shape = (128, 32, 32)

    from ptflops import get_model_complexity_info

    macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=False)


    print(macs, params)