File size: 10,474 Bytes
d960e2d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
import torch
import torch.nn as nn
import torch.nn.functional as F

try:
    from .arch_util import LayerNorm2d
    from .local_arch import Local_Base
except:
    from arch_util import LayerNorm2d
    from local_arch import Local_Base


class SimpleGate(nn.Module):
    def forward(self, x):
        x1, x2 = x.chunk(2, dim=1)
        return x1 * x2

class NAFBlock(nn.Module):
    def __init__(self, c, DW_Expand=2, FFN_Expand=2, drop_out_rate=0.):
        super().__init__()
        dw_channel = c * DW_Expand
        self.conv1 = nn.Conv2d(in_channels=c, out_channels=dw_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv2 = nn.Conv2d(in_channels=dw_channel, out_channels=dw_channel, kernel_size=3, padding=1, stride=1, groups=dw_channel,
                               bias=True) # the dconv
        self.conv3 = nn.Conv2d(in_channels=dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        
        # Simplified Channel Attention
        self.sca = nn.Sequential(
            nn.AdaptiveAvgPool2d(1),
            nn.Conv2d(in_channels=dw_channel // 2, out_channels=dw_channel // 2, kernel_size=1, padding=0, stride=1,
                      groups=1, bias=True),
        )

        # SimpleGate
        self.sg = SimpleGate()

        ffn_channel = FFN_Expand * c
        self.conv4 = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True)
        self.conv5 = nn.Conv2d(in_channels=ffn_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True)

        self.norm1 = LayerNorm2d(c)
        self.norm2 = LayerNorm2d(c)

        self.dropout1 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()
        self.dropout2 = nn.Dropout(drop_out_rate) if drop_out_rate > 0. else nn.Identity()

        self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
        self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):
        x = inp           # size [B, C, H, W]

        x = self.norm1(x) # size [B, C, H, W]

        x = self.conv1(x) # size [B, 2*C, H, W]
        x = self.conv2(x) # size [B, 2*C, H, W]
        x = self.sg(x)    # size [B, C, H, W]
        x = x * self.sca(x) # size [B, C, H, W]
        x = self.conv3(x) # size [B, C, H, W]

        x = self.dropout1(x)

        y = inp + x * self.beta # size [B, C, H, W]

        x = self.conv4(self.norm2(y)) # size [B, 2*C, H, W]
        x = self.sg(x)  # size [B, C, H, W]
        x = self.conv5(x) # size [B, C, H, W]

        x = self.dropout2(x)

        return y + x * self.gamma


class NAFNet(nn.Module):

    def __init__(self, img_channel=3, width=16, middle_blk_num=1, enc_blk_nums=[], dec_blk_nums=[]):
        super().__init__()

        self.intro = nn.Conv2d(in_channels=img_channel, out_channels=width, kernel_size=3, padding=1, stride=1, groups=1,
                              bias=True)
        self.ending = nn.Conv2d(in_channels=width, out_channels=img_channel, kernel_size=3, padding=1, stride=1, groups=1,
                              bias=True)

        self.encoders = nn.ModuleList()
        self.decoders = nn.ModuleList()
        self.middle_blks = nn.ModuleList()
        self.ups = nn.ModuleList()
        self.downs = nn.ModuleList()

        chan = width
        for num in enc_blk_nums:
            self.encoders.append(
                nn.Sequential(
                    *[NAFBlock(chan) for _ in range(num)]
                )
            )
            self.downs.append(
                nn.Conv2d(chan, 2*chan, 2, 2)
            )
            chan = chan * 2

        self.middle_blks = \
            nn.Sequential(
                *[NAFBlock(chan) for _ in range(middle_blk_num)]
            )

        for num in dec_blk_nums:
            self.ups.append(
                nn.Sequential(
                    nn.Conv2d(chan, chan * 2, 1, bias=False),
                    nn.PixelShuffle(2)
                )
            )
            chan = chan // 2
            self.decoders.append(
                nn.Sequential(
                    *[NAFBlock(chan) for _ in range(num)]
                )
            )

        self.padder_size = 2 ** len(self.encoders)

    def forward(self, inp):
        B, C, H, W = inp.shape
        inp = self.check_image_size(inp)

        x = self.intro(inp)

        encs = []

        for encoder, down in zip(self.encoders, self.downs):
            x = encoder(x)
            encs.append(x)
            x = down(x)

        x = self.middle_blks(x)

        for decoder, up, enc_skip in zip(self.decoders, self.ups, encs[::-1]):
            x = up(x)
            x = x + enc_skip
            x = decoder(x)

        x = self.ending(x)
        x = x + inp

        return x[:, :, :H, :W]

    def check_image_size(self, x):
        _, _, h, w = x.size()
        mod_pad_h = (self.padder_size - h % self.padder_size) % self.padder_size
        mod_pad_w = (self.padder_size - w % self.padder_size) % self.padder_size
        x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0)
        return x


class NAFNetLocal(Local_Base, NAFNet):
    def __init__(self, *args, train_size=(1, 3, 256, 256), fast_imp=False, **kwargs):
        Local_Base.__init__(self)
        NAFNet.__init__(self, *args, **kwargs)

        N, C, H, W = train_size
        base_size = (int(H * 1.5), int(W * 1.5))

        self.eval()
        with torch.no_grad():
            self.convert(base_size=base_size, train_size=train_size, fast_imp=fast_imp)

class FreBlock(nn.Module):
    def __init__(self, nc):
        super(FreBlock, self).__init__()
        self.fpre = nn.Conv2d(nc, nc, 1, 1, 0)
        self.process1 = nn.Sequential(
            nn.Conv2d(nc, nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(nc, nc, 1, 1, 0))
        self.process2 = nn.Sequential(
            nn.Conv2d(nc, nc, 1, 1, 0),
            nn.LeakyReLU(0.1, inplace=True),
            nn.Conv2d(nc, nc, 1, 1, 0))

    def forward(self, x):
        _, _, H, W = x.shape
        x_freq = torch.fft.rfft2(self.fpre(x), norm='backward')
        mag = torch.abs(x_freq)
        pha = torch.angle(x_freq)
        mag = self.process1(mag)
        pha = self.process2(pha)
        real = mag * torch.cos(pha)
        imag = mag * torch.sin(pha)
        x_out = torch.complex(real, imag)
        x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')

        return x_out+x

# class FPA(nn.Module):
    
#     def __init__(self,nc):
#         super(FPA, self).__init__()
#         self.process_mag = nn.Sequential(
#             nn.Conv2d(nc, nc, 1, 1, 0),
#             nn.LeakyReLU(0.1, inplace=True),
#             nn.Conv2d(nc, nc, 1, 1, 0),
#             nn.LeakyReLU(0.1, inplace=True),
#             nn.Conv2d(nc, nc, 1, 1, 0))
#         self.process_pha = nn.Sequential(
#             nn.Conv2d(nc, nc, 1, 1, 0),
#             nn.LeakyReLU(0.1, inplace=True),
#             nn.Conv2d(nc, nc, 1, 1, 0),
#             nn.LeakyReLU(0.1, inplace=True),
#             nn.Conv2d(nc, nc, 1, 1, 0))
        
#     def forward(self, input):
#         _, _, H, W = input.shape
#         x_freq = torch.fft.rfft2(input, norm='backward')
#         mag = torch.abs(x_freq)
#         pha = torch.angle(x_freq)
#         mag = mag + self.process_mag(mag)
#         pha = pha + self.process_pha(pha)
#         real = mag * torch.cos(pha)
#         imag = mag * torch.sin(pha)
#         x_out = torch.complex(real, imag)
#         x_out = torch.fft.irfft2(x_out, s=(H, W), norm='backward')
#         return x_out
        

# class FBlock(nn.Module):
    
#     def __init__(self, c, DW_Expand=2, FFN_Expand=2, dilations = [1], extra_depth_wise = False):
#         super(FBlock, self).__init__()
        
#         self.branches = nn.ModuleList()
#         for dilation in dilations:
#             self.branches.append(Branch_v2(c, DW_Expand, dilation = dilation, extra_depth_wise=extra_depth_wise))

#         assert len(dilations) == len(self.branches)
#         self.dw_channel = DW_Expand * c 
#         self.sca = nn.Sequential(
#                        nn.AdaptiveAvgPool2d(1),
#                        nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=self.dw_channel // 2, kernel_size=1, padding=0, stride=1,
#                        groups=1, bias=True, dilation = 1),  
#         )
#         self.sg1 = SimpleGate()
#         self.conv3 = nn.Conv2d(in_channels=self.dw_channel // 2, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)



#         self.norm1 = LayerNorm2d(c)
#         self.norm2 = LayerNorm2d(c)
        
#         ffn_channel = FFN_Expand * c
#         self.conv_fpr_intro = nn.Conv2d(in_channels=c, out_channels=ffn_channel, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
#         self.fpa = FPA(nc = ffn_channel)
#         self.conv_fpr_out = nn.Conv2d(in_channels=ffn_channel, out_channels=c, kernel_size=1, padding=0, stride=1, groups=1, bias=True, dilation = 1)
        
#         self.gamma = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)
#         self.beta = nn.Parameter(torch.zeros((1, c, 1, 1)), requires_grad=True)

    def forward(self, inp):

        y = inp
        x = self.norm1(inp)
        z=0
        for branch in self.branches:
            z += branch(x)
        
        z = self.sg1(z)
        x = self.sca(z) * z
        x = self.conv3(x)
        y = inp + self.beta * x
        #Frequency pixel residue
        x = self.conv_fpr_intro(self.norm2(y)) # size [B, C, H, W]
        x = self.fpa(x)  # size [B, C, H, W]
        x = self.conv_fpr_out(x)

        return y + x * self.gamma

if __name__ == '__main__':
    
    img_channel = 3
    width = 32

    enc_blks = [1, 2, 3]
    middle_blk_num = 3
    dec_blks = [3, 1, 1]
    dilations = [1, 4, 9]
    extra_depth_wise = False
    
    # net = NAFNet(img_channel=img_channel, width=width, middle_blk_num=middle_blk_num,
    #                   enc_blk_nums=enc_blks, dec_blk_nums=dec_blks)
    net  = EBlock_v2(c = img_channel, 
                            dilations = dilations,
                            extra_depth_wise=extra_depth_wise)

    inp_shape = (3, 256, 256)

    from ptflops import get_model_complexity_info

    macs, params = get_model_complexity_info(net, inp_shape, verbose=False, print_per_layer_stat=True)


    print(macs, params)