File size: 3,011 Bytes
d1bcb75
 
 
 
 
9e2ef13
d1bcb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9e2ef13
 
 
 
 
 
 
 
 
d1bcb75
 
 
 
8ab7ee2
94e9f15
8ab7ee2
d1bcb75
94e9f15
 
d1bcb75
 
 
 
 
 
 
 
 
 
 
 
 
 
4fc7ee7
d1bcb75
 
 
 
 
 
50b5a48
 
 
 
 
d1bcb75
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import gradio as gr 
from PIL import Image
import torch
import torchvision.transforms as transforms
import numpy as np
import torch.nn.functional as F

from archs.model import UNet


device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
#define some auxiliary functions
pil_to_tensor = transforms.ToTensor()
    
# define some parameters based on the run we want to make

model = UNet()

checkpoints = torch.load('./models/chk_6000.pt', map_location=device)

model.load_state_dict(checkpoints['model_state_dict'])

model = model.to(device)

model.eval()

def load_img (filename):
    img = Image.open(filename).convert("RGB")
    img_tensor = pil_to_tensor(img)
    return img_tensor


def check_image_size(x):
    _, _, h, w = x.size()
    mod_pad_h = (32 - h % 32) % 32
    mod_pad_w = (32 - w % 32) % 32
    x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0)
    return x


def process_img(image):
    img = np.array(image)
    img = img / 255.
    img = img.astype(np.float32)
    

       
    y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
    resize = transforms.Resize((720, 1280))
    y = resize(y)

    with torch.no_grad():
        x_hat = model(y)

    restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
    restored_img = np.clip(restored_img, 0. , 1.)

    restored_img = (restored_img * 255.0).round().astype(np.uint8)  # float32 to uint8
    return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img))

title = "Efficient Low-Light Enhancement ✏️🖼️ 🤗"
description = ''' ## [Inpainting for Autonomous Driving](https://github.com/cidautai)
[Javier Abad Hernández](https://github.com/javierabad01)
Fundación Cidaut
“Inpainting is a technique used to restore or fill in missing parts of an image. Specifically, it works well for images where a synthetic object has been intentionally added (such as a placeholder or occlusion). In the context of datasets like BDD100K, inpainting can effectively remove these synthetic objects, resulting in a cleaner and more natural appearance.”
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
**This demo expects an image with some degradations.**
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
<br>
'''

examples = [['examples/inputs/1.jpg'],
            ['examples/inputs/2.jpg'], 
            ['examples/inputs/3.jpg'], 
            ["examples/inputs/4.jpg"], 
            ["examples/inputs/5.jpg"]]

css = """
    .image-frame img, .image-container img {
        width: auto;
        height: auto;
        max-width: none;
    }
"""

demo = gr.Interface(
    fn = process_img,
    inputs = [
            gr.Image(type = 'pil', label = 'input')
    ],
    outputs = [gr.Image(type='pil', label = 'output')],
    title = title,
    description = description,
    examples = examples,
    css = css
)

if __name__ == '__main__':
    demo.launch()