Spaces:
Sleeping
Sleeping
File size: 3,011 Bytes
d1bcb75 9e2ef13 d1bcb75 9e2ef13 d1bcb75 8ab7ee2 94e9f15 8ab7ee2 d1bcb75 94e9f15 d1bcb75 4fc7ee7 d1bcb75 50b5a48 d1bcb75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 |
import gradio as gr
from PIL import Image
import torch
import torchvision.transforms as transforms
import numpy as np
import torch.nn.functional as F
from archs.model import UNet
device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
#define some auxiliary functions
pil_to_tensor = transforms.ToTensor()
# define some parameters based on the run we want to make
model = UNet()
checkpoints = torch.load('./models/chk_6000.pt', map_location=device)
model.load_state_dict(checkpoints['model_state_dict'])
model = model.to(device)
model.eval()
def load_img (filename):
img = Image.open(filename).convert("RGB")
img_tensor = pil_to_tensor(img)
return img_tensor
def check_image_size(x):
_, _, h, w = x.size()
mod_pad_h = (32 - h % 32) % 32
mod_pad_w = (32 - w % 32) % 32
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), value = 0)
return x
def process_img(image):
img = np.array(image)
img = img / 255.
img = img.astype(np.float32)
y = torch.tensor(img).permute(2,0,1).unsqueeze(0).to(device)
resize = transforms.Resize((720, 1280))
y = resize(y)
with torch.no_grad():
x_hat = model(y)
restored_img = x_hat.squeeze().permute(1,2,0).clamp_(0, 1).cpu().detach().numpy()
restored_img = np.clip(restored_img, 0. , 1.)
restored_img = (restored_img * 255.0).round().astype(np.uint8) # float32 to uint8
return Image.fromarray(restored_img) #(image, Image.fromarray(restored_img))
title = "Efficient Low-Light Enhancement ✏️🖼️ 🤗"
description = ''' ## [Inpainting for Autonomous Driving](https://github.com/cidautai)
[Javier Abad Hernández](https://github.com/javierabad01)
Fundación Cidaut
“Inpainting is a technique used to restore or fill in missing parts of an image. Specifically, it works well for images where a synthetic object has been intentionally added (such as a placeholder or occlusion). In the context of datasets like BDD100K, inpainting can effectively remove these synthetic objects, resulting in a cleaner and more natural appearance.”
> **Disclaimer:** please remember this is not a product, thus, you will notice some limitations.
**This demo expects an image with some degradations.**
Due to the GPU memory limitations, the app might crash if you feed a high-resolution image (2K, 4K).
<br>
'''
examples = [['examples/inputs/1.jpg'],
['examples/inputs/2.jpg'],
['examples/inputs/3.jpg'],
["examples/inputs/4.jpg"],
["examples/inputs/5.jpg"]]
css = """
.image-frame img, .image-container img {
width: auto;
height: auto;
max-width: none;
}
"""
demo = gr.Interface(
fn = process_img,
inputs = [
gr.Image(type = 'pil', label = 'input')
],
outputs = [gr.Image(type='pil', label = 'output')],
title = title,
description = description,
examples = examples,
css = css
)
if __name__ == '__main__':
demo.launch() |