Spaces:
Sleeping
Sleeping
from fastapi import APIRouter | |
from datetime import datetime | |
from datasets import load_dataset | |
from sklearn.metrics import accuracy_score | |
import numpy as np | |
import os | |
import torch | |
import gc | |
import psutil | |
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor, pipeline | |
from .utils.evaluation import AudioEvaluationRequest | |
from .utils.emissions import tracker, clean_emissions_data, get_space_info | |
from dotenv import load_dotenv | |
import logging | |
import csv | |
import torch.nn.utils.prune as prune | |
# Configurer le logging | |
logging.basicConfig(level=logging.INFO) | |
logging.info("Début du fichier python") | |
load_dotenv() | |
router = APIRouter() | |
DESCRIPTION = "Random Baseline" | |
ROUTE = "/audio" | |
device = 0 if torch.cuda.is_available() else -1 | |
def preprocess_function(example, feature_extractor): | |
return feature_extractor( | |
[x["array"] for x in example["audio"]], | |
sampling_rate=feature_extractor.sampling_rate, padding="longest", max_length=16000, truncation=True, return_tensors="pt" | |
) | |
def apply_pruning(model, amount=0.3): | |
"""Applique un pruning sur les poids du modèle.""" | |
for name, module in model.named_modules(): | |
if isinstance(module, torch.nn.Linear): | |
prune.l1_unstructured(module, name="weight", amount=amount) | |
prune.remove(module, "weight") | |
return model | |
async def evaluate_audio(request: AudioEvaluationRequest): | |
""" | |
Evaluate audio classification for rainforest sound detection. | |
""" | |
# Get space info | |
username, space_url = get_space_info() | |
logging.info("Chargement des données") | |
dataset = load_dataset(request.dataset_name, streaming=True, token=os.getenv("HF_TOKEN")) | |
logging.info("Données chargées") | |
test_dataset = dataset["test"] | |
del dataset | |
# Start tracking emissions | |
tracker.start() | |
tracker.start_task("inference") | |
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base") | |
test_dataset = test_dataset.map(preprocess_function, fn_kwargs={"feature_extractor": feature_extractor}, remove_columns="audio", batched=True, batch_size=32) | |
gc.collect() | |
model_name = "CindyDelage/Challenge_HuggingFace_DFG_FrugalAI" | |
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name) | |
# Appliquer la quantification dynamique et le pruning | |
model.eval() | |
model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8) | |
model = apply_pruning(model, amount=0.3) # Prune 30% des poids linéaires | |
classifier = pipeline("audio-classification", model=model, feature_extractor=feature_extractor, device=device) | |
predictions = [] | |
logging.info("Début des prédictions par batch") | |
for data in iter(test_dataset): | |
with torch.no_grad(): | |
result = classifier(np.asarray(data["input_values"]), batch_size=1) | |
predicted_label = result[0]['label'] | |
label = 1 if predicted_label == 'environment' else 0 | |
predictions.append(label) | |
# Nettoyer la mémoire après chaque itération | |
del result | |
del label | |
torch.cuda.empty_cache() | |
gc.collect() | |
logging.info("Fin des prédictions") | |
del classifier | |
del feature_extractor | |
gc.collect() | |
# Stop tracking emissions | |
emissions_data = tracker.stop_task() | |
true_labels = [] | |
for example in test_dataset: | |
true_labels.append(example["label"]) | |
accuracy = accuracy_score(true_labels, predictions) | |
results = { | |
"username": username, | |
"space_url": space_url, | |
"submission_timestamp": datetime.now().isoformat(), | |
"model_description": DESCRIPTION, | |
"accuracy": float(accuracy), | |
"energy_consumed_wh": emissions_data.energy_consumed * 1000, | |
"emissions_gco2eq": emissions_data.emissions * 1000, | |
"emissions_data": clean_emissions_data(emissions_data), | |
"api_route": ROUTE, | |
"dataset_config": { | |
"dataset_name": request.dataset_name, | |
"test_size": request.test_size, | |
"test_seed": request.test_seed | |
} | |
} | |
logging.info("Returning results") | |
return results | |