CindyDelage's picture
Update tasks/audio.py
cc249c3 verified
raw
history blame
4.3 kB
from fastapi import APIRouter
from datetime import datetime
from datasets import load_dataset
from sklearn.metrics import accuracy_score
import numpy as np
import os
import torch
import gc
import psutil
from transformers import Wav2Vec2ForSequenceClassification, AutoFeatureExtractor, pipeline
from .utils.evaluation import AudioEvaluationRequest
from .utils.emissions import tracker, clean_emissions_data, get_space_info
from dotenv import load_dotenv
import logging
import csv
import torch.nn.utils.prune as prune
# Configurer le logging
logging.basicConfig(level=logging.INFO)
logging.info("Début du fichier python")
load_dotenv()
router = APIRouter()
DESCRIPTION = "Random Baseline"
ROUTE = "/audio"
device = 0 if torch.cuda.is_available() else -1
def preprocess_function(example, feature_extractor):
return feature_extractor(
[x["array"] for x in example["audio"]],
sampling_rate=feature_extractor.sampling_rate, padding="longest", max_length=16000, truncation=True, return_tensors="pt"
)
def apply_pruning(model, amount=0.3):
"""Applique un pruning sur les poids du modèle."""
for name, module in model.named_modules():
if isinstance(module, torch.nn.Linear):
prune.l1_unstructured(module, name="weight", amount=amount)
prune.remove(module, "weight")
return model
@router.post(ROUTE, tags=["Audio Task"], description=DESCRIPTION)
async def evaluate_audio(request: AudioEvaluationRequest):
"""
Evaluate audio classification for rainforest sound detection.
"""
# Get space info
username, space_url = get_space_info()
logging.info("Chargement des données")
dataset = load_dataset(request.dataset_name, streaming=True, token=os.getenv("HF_TOKEN"))
logging.info("Données chargées")
test_dataset = dataset["test"]
del dataset
# Start tracking emissions
tracker.start()
tracker.start_task("inference")
feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base")
test_dataset = test_dataset.map(preprocess_function, fn_kwargs={"feature_extractor": feature_extractor}, remove_columns="audio", batched=True, batch_size=32)
gc.collect()
model_name = "CindyDelage/Challenge_HuggingFace_DFG_FrugalAI"
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
# Appliquer la quantification dynamique et le pruning
model.eval()
model = torch.quantization.quantize_dynamic(model, dtype=torch.qint8)
model = apply_pruning(model, amount=0.3) # Prune 30% des poids linéaires
classifier = pipeline("audio-classification", model=model, feature_extractor=feature_extractor, device=device)
predictions = []
logging.info("Début des prédictions par batch")
for data in iter(test_dataset):
with torch.no_grad():
result = classifier(np.asarray(data["input_values"]), batch_size=1)
predicted_label = result[0]['label']
label = 1 if predicted_label == 'environment' else 0
predictions.append(label)
# Nettoyer la mémoire après chaque itération
del result
del label
torch.cuda.empty_cache()
gc.collect()
logging.info("Fin des prédictions")
del classifier
del feature_extractor
gc.collect()
# Stop tracking emissions
emissions_data = tracker.stop_task()
true_labels = []
for example in test_dataset:
true_labels.append(example["label"])
accuracy = accuracy_score(true_labels, predictions)
results = {
"username": username,
"space_url": space_url,
"submission_timestamp": datetime.now().isoformat(),
"model_description": DESCRIPTION,
"accuracy": float(accuracy),
"energy_consumed_wh": emissions_data.energy_consumed * 1000,
"emissions_gco2eq": emissions_data.emissions * 1000,
"emissions_data": clean_emissions_data(emissions_data),
"api_route": ROUTE,
"dataset_config": {
"dataset_name": request.dataset_name,
"test_size": request.test_size,
"test_seed": request.test_seed
}
}
logging.info("Returning results")
return results